Journal of neurophysiology
-
1. Properties of antidromically identified efferent neurons within the cortical representation of the vibrissae, sinus hairs, and philtrum were examined in motor cortex of fully awake adult rabbits. Efferent neurons were tested for both receptive field and axonal properties and included callosal (CC) neurons (n = 31), ipsilateral corticocortical (C-IC) neurons (n = 34) that project to primary somatosensory cortex (S-1), and corticofugal neurons of layer 5 (CF-5) (n = 33) and layer 6 (CF-6) (n = 32) that project to and/or beyond the thalamus. ⋯ Although all but two CF-5 neurons responded to peripheral sensory stimulation, many CC (35%), C-IC (59%), or CF-6 (66%) neurons did not. CC, CF-5, and CF-6 neurons that did not respond to sensory stimulation had significantly lower axonal conduction velocities and spontaneous firing rates than those that responded to such stimulation. 4. Sensory receptive fields of neurons in motor cortex were considerably larger than those observed in S-1 but were similar in size to those seen in secondary somatosensory cortex (S-2).(ABSTRACT TRUNCATED AT 400 WORDS)
-
1. Neurophysiological recordings were undertaken to determine how neurons in the central nucleus of the inferior colliculus (ICc) of the little brown bat, Myotis lucifugus, extract amplitude modulations that span across a series of tone pulses (i.e., signals that simulate echoes from fluttering targets). Two types of stimuli were presented to the bats. ⋯ In contrast, PL neurons showed mostly high-pass response functions, but one third displayed band-pass response functions. 4. The ability of ICc neurons to time-lock their discharges to the individual pulses in a train was characterized by using the synchronization coefficient (SC) as a measure. The SC was plotted against the repetition rate to construct units' synchronization-based response function.(ABSTRACT TRUNCATED AT 400 WORDS)
-
1. In mammals with good low-frequency hearing, the medial superior olive (MSO) processes interaural time or phase differences that are important cues for sound localization. Its cells receive excitatory projections from both cochlear nuclei and are thought to function as coincidence detectors. ⋯ The effects of strychnine were reversible. 7. Twenty of 21 neurons tested with sinusoidally amplitude-modulated (SAM) signals exhibited low-pass or band-pass filter characteristics. Tests with SAM signals also revealed a weak temporal summation of inhibition in 13 of the 21 cells tested.(ABSTRACT TRUNCATED AT 400 WORDS)
-
1. The effects of repetitive stimulation of primary afferents in lumbar dorsal roots on synaptic transmission in the dorsal horn (DH) were studied in a rat spinal cord slice-dorsal root ganglion (DRG)-peripheral nerve trunk preparation by the use of intracellular recording from neurons (n = 115) of the spinal dorsal horn (depth 147 +/- 139, mean +/- SD). All DH neurons were excited synaptically by electrical stimulation of the dorsal root or the peripheral nerve trunk. ⋯ A test of other, adjacent primary afferents revealed that these synapses in the neurons in the superficial laminae had not undergone potentiation. This "synaptic specificity" of post-wind-up potentiation suggested that the mechanism for the induction of stimulation-dependent changes in the excitability of the DH neuron is presynaptic to the recorded-from neuron. 4. In a concentration of 0.5 microM and higher, tetrodotoxin (TTX) applied to sensory neurons selectively blocked action potentials in large myelinated primary afferents.(ABSTRACT TRUNCATED AT 400 WORDS)
-
1. Teased-fiber recordings were made from the axons of dorsal root ganglion (DRG) neurons in rats that underwent transection of the sciatic nerve 4-22 days previously. Many of the neurons had spontaneous ectopic discharge originating from within the DRG. 2. ⋯ These "crossed afterdischarge" responses were not blocked by phentolamine. Single-pulse stimuli of neighboring afferents had no effect. 6. Sympathetic-sensory coupling in DRGs of nerve-injured animals provides a previously unsuspected substrate for sympathetic involvement in neuropathic sensory dysfunction.