Journal of neurophysiology
-
This study explores the effects of oxytocin receptor (OXTR) in the trigeminal ganglion (TG) on orofacial neuropathic pain. We demonstrate that OXTR activation in the TG relieves the orofacial ectopic pain as well as inhibits the upregulated expression of calcitonin gene-related peptide (CGRP), IL-1β, and TNFα in the TG and spinal trigeminal nucleus caudalis (SpVc) of rats with inferior alveolar nerve transection. OXTR, a G protein-coupled receptor, has been demonstrated to play a significant role in analgesia after activation by its canonical agonist oxytocin (OXT) in the dorsal root ganglion. ⋯ And the inhibition effect of OXT on the expression of CGRP, IL-1β, and TNFα was abolished by preapplication of OXTR antagonist L-368,899 into the TG. NEW & NOTEWORTHY This study explores the effects of oxytocin receptor (OXTR) in the trigeminal ganglion (TG) on orofacial neuropathic pain. We demonstrate that OXTR activation in the TG relieves the orofacial ectopic pain as well as inhibits the upregulated expression of calcitonin gene-related peptide, IL-1β, and TNF-α in the TG and spinal trigeminal nucleus caudalis of rats with inferior alveolar nerve transection.
-
Descending facilitatory circuitry that involves the rostroventromedial medulla (RVM) exerts a significant role in the development of antinociceptive tolerance and hyperalgesia following chronic morphine treatment. The role of the RVM in the development of antinociceptive tolerance to oxycodone, another clinically used strong opioid, is not yet known. Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, attenuates opioid antinociceptive tolerance, but its effect on RVM cell discharge in opioid-tolerant animals is not known. ⋯ Chronic treatment with oxycodone as well as morphine can lead to analgesic tolerance and paradoxical hyperalgesia. Here we show that an N-methyl-d-aspartate receptor-dependent pronociceptive change in discharge properties of rostroventromedial medullary neurons controlling spinal nociception has an important role in antinociceptive tolerance to morphine but not oxycodone. Interestingly, chronic oxycodone did not induce pronociceptive changes in the rostroventromedial medulla.
-
Designer receptors exclusively activated by designer drugs (DREADDs) modify cellular activity following administration of the exogenous ligand clozapine-N-oxide (CNO). However, some reports indicate CNO may have off-target effects. The current studies investigate the use of Gq DREADDs in CaMKIIa-expressing neurons in the median preoptic nucleus (MnPO). ⋯ NEW & NOTEWORTHY Rats were injected in the median preoptic nucleus (MnPO) with either an adeno-associated virus (AAV) and excitatory (Gq) designer receptor exclusively activated by designer drugs (DREADD) construct or a control AAV. In the Gq DREADD-injected rats only, clozapine-N-oxide (CNO) increased Fos staining in the MnPO and its targets and increased neuron action potential frequency. In electrophysiology experiments with slices with DREADD cells, unlabeled cells were activated and this was likely due to nitric oxide release by the DREADD cells.
-
Hearing loss caused by noise exposure, ototoxic drugs, or aging results from the loss of sensory cells, as reflected in audiometric threshold elevation. Animal studies show that loss of hair cells can be preceded by loss of auditory-nerve peripheral synapses, which likely degrades auditory processing. While this condition, known as cochlear synaptopathy, can be diagnosed in mice by a reduction of suprathreshold cochlear neural responses, its diagnosis in humans remains challenging. ⋯ NEW & NOTEWORTHY Recent animal studies suggest that millions of people may be at risk of permanent impairment from cochlear synaptopathy, the age-related and noise-induced degeneration of neural connections in the inner ear that "hides" behind a normal audiogram. This study examines electrophysiological responses to clicks in a large cohort of subjects with normal hearing sensitivity. The resultant correlations with word recognition performance are consistent with an important contribution cochlear neural damage to deficits in hearing in noise abilities.
-
Auditory gamma-band (>30 Hz) activity is a biomarker of cortical excitation/inhibition (E/I) balance in autism, schizophrenia, and bipolar disorder. We provide a comprehensive account of the effects of transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS) on gamma responses. Forty-five healthy young adults listened to 40-Hz auditory click trains while electroencephalography (EEG) data were collected to measure stimulus-related gamma activity immediately before and after 10 min of 1 mA tACS (40 Hz), tDCS, or sham stimulation to left auditory cortex. tACS, but not tDCS, increased gamma power and phase locking to the auditory stimulus. ⋯ NEW & NOTEWORTHY Gamma frequency-tuned transcranial alternating current stimulation (tACS) adjusts the magnitude and timing of auditory gamma responses, as compared with both sham stimulation and transcranial direct current stimulation (tDCS). However, both tACS and tDCS strengthen the gamma phase connectome, which is disrupted in numerous neurological and psychiatric disorders. These findings reveal dissociable neurophysiological changes following two noninvasive neurostimulation techniques commonly applied in clinical and research settings.