Journal of neurophysiology
-
TRPV1 receptors are activated and/or modulated by noxious heat, capsaicin, protons and other endogenous agents released following tissue injury. There is a growing appreciation that this molecular integrator may also have a role in mechanosensation. To further understand this role, we investigated the systemic and site-specific effects of a selective TRPV1 receptor antagonist, A-889425, on low-intensity mechanical stimulation in inflamed rats. ⋯ Local injection experiments indicated that this effect of A-889425 on spontaneous firing was mainly mediated via TRPV1 receptors in the spinal cord. Thus the current data demonstrate that TRPV1 receptors have an enhanced role after an inflammatory injury, impacting both low-intensity mechanotransmission and possibly spontaneous pain. Furthermore this study delineates the differential contribution of central and peripheral TRPV1 receptors to affect spontaneous or mechanically evoked firing of WDR neurons.
-
Opioids depress the activity of brain stem respiratory-related neurons, but it is not resolved whether the mechanism at clinical concentrations consists of direct neuronal effects or network effects. We performed extracellular recordings of discharge activity of single respiratory neurons in the caudal ventral respiratory group of decerebrate dogs, which were premotor neurons with a likelihood of 90%. We used multibarrel glass microelectrodes, which allowed concomitant highly localized picoejection of opioid receptor agonists or antagonists onto the neuron. ⋯ Our data suggest that mu, delta(1), and delta(2) receptors are present on canine respiratory premotor neurons. Clinical concentrations of morphine and remifentanil caused no local depression. This lack of effect and the inability of local naloxone to reverse the neuronal depression by intravenous remifentanil suggest that clinical concentrations of opioids produce their depressive effects on mechanisms upstream from respiratory bulbospinal premotor neurons.
-
Deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) is an effective therapy option for controlling the motor symptoms of medication-refractory Parkinson's disease and dystonia. Despite the clinical successes of GPi DBS, the precise therapeutic mechanisms are unclear and questions remain on the optimal electrode placement and stimulation parameter selection strategies. In this study, we developed a three-dimensional computational model of GPi-DBS in nonhuman primates to investigate how membrane channel dynamics, synaptic inputs, and axonal collateralization contribute to the neural responses generated during stimulation. ⋯ In contrast, axonal output from GPi neurons remained largely time-locked to each pulse of the stimulation train. Similar entrainment was also observed in GPe efferents, a majority of which have been shown to project through GPi en route to the subthalamic nucleus. The models suggest that pallidal DBS may have broader network effects than previously realized and the modes of therapy may depend on the relative proportion of GPi and/or GPe efferents that are directly affected by the stimulation.
-
Previous studies have demonstrated that locally administered cannabinoids attenuate allodynia and hyperalgesia through activation of peripheral cannabinoid receptors (CB(1) and CB(2)). However, it is currently unknown if cannabinoids alter the response properties of nociceptors. In the present study, correlative behavioral and in vivo electrophysiological studies were conducted to determine if peripheral administration of the cannabinoid receptor agonists arachidonyl-2'-chloroethylamide (ACEA) or (R)-(+)-methanandamide (methAEA) could attenuate mechanical allodynia and hyperalgesia, and decrease mechanically evoked responses of Adelta nociceptors. ⋯ In parallel studies, recordings were made from cutaneous Adelta nociceptors from inflamed or control, non-inflamed skin. Both ACEA and methAEA decreased responses evoked by mechanical stimulation of Adelta nociceptors from inflamed skin but not from non-inflamed skin, and this decrease was blocked by administration of the CB(1) receptor antagonist AM251. These results suggest that attenuation of mechanically evoked responses of Adelta nociceptors contributes to the behavioral antinociception produced by activation of peripheral CB(1) receptors during inflammation.
-
The supratrigeminal region (SupV) receives abundant orofacial sensory inputs and descending inputs from the cortical masticatory area and contains premotor neurons that target the trigeminal motor nucleus (MoV). Thus it is possible that the SupV is involved in controlling jaw muscle activity via sensory inputs during mastication. We used voltage-sensitive dye, laser photostimulation, patch-clamp recordings, and intracellular biocytin labeling to investigate synaptic transmission from the SupV to jaw-closing and jaw-opening motoneurons in the MoV in brain stem slice preparations from developing rats. ⋯ Gramicidin-perforated and whole cell patch-clamp recordings from masseter motoneurons (MMNs) and digastric motoneurons (DMNs) revealed that glycinergic and GABAergic postsynaptic responses evoked in MMNs and DMNs by SupV stimulation were excitatory in P1-P4 neonatal rats and inhibitory in P9-P12 juvenile rats, whereas glutamatergic postsynaptic responses evoked by SupV stimulation were excitatory in both neonates and juveniles. Furthermore, the axons of biocytin-labeled SupV neurons that were antidromically activated by MoV stimulation terminated in the MoV. Our results suggest that inputs from the SupV excite MMNs and DMNs through activation of glutamate, glycine, and GABAA receptors in neonates, whereas glycinergic and GABAergic inputs from the SupV inhibit MMNs and DMNs in juveniles.