Bmc Med Res Methodol
-
Bmc Med Res Methodol · Aug 2016
Specialist nurses' perceptions of inviting patients to participate in clinical research studies: a qualitative descriptive study of barriers and facilitators.
Increasing the number of patients participating in research studies is a current priority in the National Health Service (NHS) in the United Kingdom. The role of specialist nurses in inviting patients to participate is important, yet little is known about their experiences of doing so. The aim of this study was to explore the perceptions of barriers and facilitators held by specialist nurses with experience of inviting adult NHS patients to a wide variety of research studies. ⋯ Our study offers several new insights regarding the role of specialist nurses in recruiting patients for research. It shows that strong local research culture and teamwork overcome some wider organisational and workload barriers reported in previous studies. In addition, and in contrast to common practice, our findings suggest research teams may benefit from individualising study training and invitation procedures to specialist nurses' preferences and requirements. Findings provide a basis for reflection on practice for specialist nurses, research teams, policymakers, and all with an interest in increasing patient participation in research.
-
Bmc Med Res Methodol · Aug 2016
Measuring inter-rater reliability for nominal data - which coefficients and confidence intervals are appropriate?
Reliability of measurements is a prerequisite of medical research. For nominal data, Fleiss' kappa (in the following labelled as Fleiss' K) and Krippendorff's alpha provide the highest flexibility of the available reliability measures with respect to number of raters and categories. Our aim was to investigate which measures and which confidence intervals provide the best statistical properties for the assessment of inter-rater reliability in different situations. ⋯ Fleiss' K and Krippendorff's alpha with bootstrap confidence intervals are equally suitable for the analysis of reliability of complete nominal data. The asymptotic confidence interval for Fleiss' K should not be used. In the case of missing data or data or higher than nominal order, Krippendorff's alpha is recommended. Together with this article, we provide an R-script for calculating Fleiss' K and Krippendorff's alpha and their corresponding bootstrap confidence intervals.
-
Bmc Med Res Methodol · Jul 2016
Two new methods to fit models for network meta-analysis with random inconsistency effects.
Meta-analysis is a valuable tool for combining evidence from multiple studies. Network meta-analysis is becoming more widely used as a means to compare multiple treatments in the same analysis. However, a network meta-analysis may exhibit inconsistency, whereby the treatment effect estimates do not agree across all trial designs, even after taking between-study heterogeneity into account. We propose two new estimation methods for network meta-analysis models with random inconsistency effects. ⋯ The extent of heterogeneity and inconsistency should be assessed and reported in any network meta-analysis. Our two new methods can be used to fit models for network meta-analysis with random inconsistency effects. They are easily implemented using the accompanying R code in the Additional file 1. Using these estimation methods, the extent of inconsistency can be assessed and reported.
-
Greater transparency, including sharing of patient-level data for further research, is an increasingly important topic for organisations who sponsor, fund and conduct clinical trials. This is a major paradigm shift with the aim of maximising the value of patient-level data from clinical trials for the benefit of future patients and society. We consider the analysis of shared clinical trial data in three broad categories: (1) reanalysis - further investigation of the efficacy and safety of the randomized intervention, (2) meta-analysis, and (3) supplemental analysis for a research question that is not directly assessing the randomized intervention. ⋯ In order to support appropriate interpretation and limit the risk of misleading findings, analysis of shared clinical trial data should have a pre-specified analysis plan. However, it is not generally possible to limit bias and control multiplicity to the extent that is possible in the original trial design, conduct and analysis, and this should be acknowledged and taken into account when interpreting results. We highlight a number of areas where specific considerations arise in planning, conducting, interpreting and reporting analyses of shared clinical trial data. A key issue is that that these analyses essentially share many of the limitations of any post hoc analyses beyond the original specified analyses. The use of individual patient data in meta-analysis can provide increased precision and reduce bias. Supplemental analyses are subject to many of the same issues that arise in broader epidemiological analyses. Specific discussion topics are addressed within each of these areas. Increased provision of patient-level data from industry and academic-led clinical trials for secondary research can benefit future patients and society. Responsible data sharing, including transparency of the research objectives, analysis plans and of the results will support appropriate interpretation and help to address the risk of misleading results and avoid unfounded health scares.
-
Bmc Med Res Methodol · Jul 2016
LetterProtecting patient privacy when sharing patient-level data from clinical trials.
Greater transparency and, in particular, sharing of patient-level data for further scientific research is an increasingly important topic for the pharmaceutical industry and other organisations who sponsor and conduct clinical trials as well as generally in the interests of patients participating in studies. A concern remains, however, over how to appropriately prepare and share clinical trial data with third party researchers, whilst maintaining patient confidentiality. Clinical trial datasets contain very detailed information on each participant. Risk to patient privacy can be mitigated by data reduction techniques. However, retention of data utility is important in order to allow meaningful scientific research. In addition, for clinical trial data, an excessive application of such techniques may pose a public health risk if misleading results are produced. After considering existing guidance, this article makes recommendations with the aim of promoting an approach that balances data utility and privacy risk and is applicable across clinical trial data holders. ⋯ Our key recommendations are as follows: 1. Data anonymisation/de-identification: Data holders are responsible for generating de-identified datasets which are intended to offer increased protection for patient privacy through masking or generalisation of direct and some indirect identifiers. 2. Controlled access to data, including use of a data sharing agreement: A legally binding data sharing agreement should be in place, including agreements not to download or further share data and not to attempt to seek to identify patients. Appropriate levels of security should be used for transferring data or providing access; one solution is use of a secure 'locked box' system which provides additional safeguards. This article provides recommendations on best practices to de-identify/anonymise clinical trial data for sharing with third-party researchers, as well as controlled access to data and data sharing agreements. The recommendations are applicable to all clinical trial data holders. Further work will be needed to identify and evaluate competing possibilities as regulations, attitudes to risk and technologies evolve.