J Med Syst
-
The main objective of this paper is to present a review of existing researches in the literature, referring to Big Data sources and techniques in health sector and to identify which of these techniques are the most used in the prediction of chronic diseases. Academic databases and systems such as IEEE Xplore, Scopus, PubMed and Science Direct were searched, considering the date of publication from 2006 until the present time. Several search criteria were established as 'techniques' OR 'sources' AND 'Big Data' AND 'medicine' OR 'health', 'techniques' AND 'Big Data' AND 'chronic diseases', etc. ⋯ It found a total of 110 articles on techniques and sources of Big Data on health from which only 32 have been identified as relevant work. Many of the articles show the platforms of Big Data, sources, databases used and identify the techniques most used in the prediction of chronic diseases. From the review of the analyzed research articles, it can be noticed that the sources and techniques of Big Data used in the health sector represent a relevant factor in terms of effectiveness, since it allows the application of predictive analysis techniques in tasks such as: identification of patients at risk of reentry or prevention of hospital or chronic diseases infections, obtaining predictive models of quality.
-
The main objective of this paper is to present a review of existing researches in the literature, referring to Big Data sources and techniques in health sector and to identify which of these techniques are the most used in the prediction of chronic diseases. Academic databases and systems such as IEEE Xplore, Scopus, PubMed and Science Direct were searched, considering the date of publication from 2006 until the present time. Several search criteria were established as 'techniques' OR 'sources' AND 'Big Data' AND 'medicine' OR 'health', 'techniques' AND 'Big Data' AND 'chronic diseases', etc. ⋯ It found a total of 110 articles on techniques and sources of Big Data on health from which only 32 have been identified as relevant work. Many of the articles show the platforms of Big Data, sources, databases used and identify the techniques most used in the prediction of chronic diseases. From the review of the analyzed research articles, it can be noticed that the sources and techniques of Big Data used in the health sector represent a relevant factor in terms of effectiveness, since it allows the application of predictive analysis techniques in tasks such as: identification of patients at risk of reentry or prevention of hospital or chronic diseases infections, obtaining predictive models of quality.
-
Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. ⋯ Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.
-
Mobile applications (apps) can be very useful software on smartphones for all aspects of people's lives. Chronic diseases, such as diabetes, can be made manageable with the support of mobile apps. Applications on smartphones can also help people with diabetes to control their fitness and health. ⋯ The levels of inclusion of features based on selection criteria in selected mobile apps can be very different. The results of the study can be used as a basis to prvide app developers with certain recommendations. There is a need for mobile apps for self-management of diabetes with more features in order to increase the number of long-term users and thus influence better self-management of the disease.
-
Mobile applications (apps) can be very useful software on smartphones for all aspects of people's lives. Chronic diseases, such as diabetes, can be made manageable with the support of mobile apps. Applications on smartphones can also help people with diabetes to control their fitness and health. ⋯ The levels of inclusion of features based on selection criteria in selected mobile apps can be very different. The results of the study can be used as a basis to prvide app developers with certain recommendations. There is a need for mobile apps for self-management of diabetes with more features in order to increase the number of long-term users and thus influence better self-management of the disease.