Mol Diagn Ther
-
Earlier identification of aggressive melanoma remains a goal in the field of melanoma research. With new targeted and immune therapies that have revolutionized the care of patients with melanoma, the ability to predict progression and monitor or predict response to therapy has become the new focus of research into biomarkers in melanoma. In this review, promising biomarkers are highlighted. ⋯ This is followed by a discussion of important genetic mutations, microRNA, and epigenetic modifications that can provide therapeutic and prognostic material. Finally, emerging serologic biomarkers are reviewed, including circulating melanoma cells and exosomes. Overall the goal is to identify biomarkers that aid in the earlier identification and improved treatment of aggressive melanoma.
-
Immunotherapy with programmed death 1 (PD-1)- and programmed death-ligand 1 (PD-L1)-targeted monoclonal antibodies has dramatically changed the therapeutic and prognostic landscape for several types of malignancy. PD-1 and PD-L1 are immune checkpoint proteins whose binding ultimately result in T cell exhaustion and self-tolerance. Blocking this pathway 'releases the brakes' on the immune system and allows for attack of tumor cells that express PD-L1. ⋯ There are four PD-L1 IHC assays registered with the FDA, using four different PD-L1 antibodies (22C3, 28-8, SP263, SP142), on two different IHC platforms (Dako and Ventana), each with their own scoring systems. Attempts at harmonization of PD-L1 IHC antibodies and staining platforms are underway. While PD-L1 IHC can be used to predict the likelihood of response to anti-PD-1 or anti-PD-L1 therapy, a proportion of patients that are negative can have a response and identification of alternative biomarkers is critical to further refine selection of patients most likely to respond to these therapies.
-
Pheno-/endotyping chronic obstructive pulmonary disease (COPD) is really important because it provides patients with precise and personalized medicine. The central concept of precision medicine is to take individual variability into account when making management decisions. Precision medicine should ensure that patients get the right treatment at the right dose at the right time, with minimum harmful consequences and maximum efficacy. ⋯ The need for biomarkers to guide the clinical care of individuals with COPD and to enhance the possibilities of success in drug development is clear and urgent, but biomarker development is tremendously challenging and expensive, and translation of research efforts to date has been largely ineffective. Furthermore, the development of personalized treatments will require a much more detailed understanding of the clinical and biological heterogeneity of COPD. Therefore, we are still far from being able to apply precision medicine in COPD and the treatable traits and FEV1-free approaches are attempts to precision medicine in COPD that must be considered still quite unsophisticated.
-
There is a profound need in oncology to detect cancer earlier, guide individualized therapies, and better monitor progress during treatment. Currently, some of this information can be achieved through solid tissue biopsy and imaging. However, these techniques are limited because of the invasiveness of the procedure and the size of the tumor. ⋯ Liquid biopsies may also allow earlier detection than traditional imaging. Liquid biopsies include the analysis of circulating tumor cells (CTCs), cell-free nucleic acid (cfNA), or extracellular vesicles obtained from a variety of biofluids, such as peripheral blood. In this review, we discuss different liquid biopsy types and how they fit into the current regulatory landscape.
-
Mutational analysis of RAS is required for anti-epidermal growth factor receptor (EGFR) treatment for patients with metastatic colorectal cancer (mCRC). However, most patients with KRAS wild-type tumors still do not respond. Other molecules downstream of the EGFR may also play a role in resistance to EGFR therapies. ⋯ RAS, BRAF, AREG, and EREG predict for efficacy of first-line anti-EGFR therapy in patients with mCRC.