Drug Des Dev Ther
-
New approaches to the treatment of multidrug-resistant and extensively drug-resistant tuberculosis (TB) are badly needed. Not only is the success rate of current treatment regimens suboptimal but existing regimens require multiple drugs and lengthy courses and may lead to significant toxicities. The treatment landscape is beginning to shift, however, with the recent approvals of the new TB drugs bedaquiline and delamanid. ⋯ It has also recently been reported to improve rates of sputum culture conversion in patients with multidrug-resistant TB when added to an optimized background regimen. Although generally well tolerated, delamanid has been associated with QT prolongation, which may be of particular clinical concern when paired with other TB drugs that may also have this effect, most notably the fluoroquinolones. Ongoing studies will help to clarify delamanid's role in the treatment of drug-resistant TB.
-
The immune system is the defense mechanism in living organisms that protects against the invasion of foreign materials, microorganisms, and pathogens. It involves multiple organs and tissues in human body, such as lymph nodes, spleen, and mucosa-associated lymphoid tissues. However, the execution of immune activities depends on a number of specific cell types, such as B cells, T cells, macrophages, and granulocytes, which provide various immune responses against pathogens. ⋯ Chalcone derivatives exhibit a broad spectrum of pharmacological activities, such as immunomodulation, as well as anti-inflammatory, anticancer, antiviral, and antimicrobial properties. Many studies have been conducted to determine their inhibitory or stimulatory activities in immune cells, and the findings are of significance to provide a new direction for subsequent research. This review highlights the effects of chalcone derivatives in different types of immune cells.
-
The aim of this study was to analyze the distribution of malignancies in patients after heart transplantation (HTX) and to evaluate the risk factors including immunosuppressive therapy with regard to the development of malignancies and survival. Special emphasis was placed on the effects of a mammalian target of rapamycin (mTOR) containing immunosuppressive regimen. ⋯ This study highlights the complexity of risk factors including immunosuppression with regard to the development of malignancies after HTX. mTOR-inhibitor-based immunosuppression is associated with a better outcome after HTX, particularly in cases with noncutaneous malignancy.
-
Comparative Study
Distinct prognostic values and potential drug targets of ALDH1 isoenzymes in non-small-cell lung cancer.
Increased aldehyde dehydrogenase 1 (ALDH1) activity has been found in the stem cell populations of leukemia and some solid tumors including non-small-cell lung cancer (NSCLC). However, which ALDH1's isoenzymes are contributing to ALDH1 activity remains elusive. In addition, the prognostic value of individual ALDH1 isoenzyme is not clear. ⋯ These results strongly support that ALDH1A1 mRNA in NSCLC is associated with better prognosis. In addition, our current study also supports that ALDH1A2 and ALDH1B1 might be major contributors to the ALDH1 activity in NSCLC, since high expression of ALDH1A2 and ALDH1B1 mRNA was found to be significantly correlated to worser OS in all NSCLC patients. Based on our study, ALDH1A2 and ALDH1B1 might be excellent potential drug targets for NSCLC patients.
-
Schizophrenia (SZ), a chronic mental and heritable disorder characterized by neurophysiological impairment and neuropsychological abnormalities, is strongly associated with D-amino acid oxidase activator (DAOA, G72). Research studies emphasized that overexpression of DAOA may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like SZ. In the present study, a hybrid approach of comparative modeling and molecular docking followed by inhibitor identification and structure modeling was employed. ⋯ We propose that selected inhibitor might be more potent on the basis of binding energy values. Further analysis of this inhibitor through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful in designing novel therapeutic targets to cure SZ.