The Journal of thoracic and cardiovascular surgery
-
J. Thorac. Cardiovasc. Surg. · Oct 2014
Activation of canonical transient receptor potential channels preserves Ca2+ entry and endothelium-derived hyperpolarizing factor-mediated function in vitro in porcine coronary endothelial cells and coronary arteries under conditions of hyperkalemia.
Although membrane depolarization by hyperkalemia is known to reduce Ca2+ influx in endothelial cells, the mechanism by which endothelial Ca2+ channel is affected by hyperkalemia remains poorly studied. We studied the effect of hyperkalemia on canonical transient receptor potential channels, in particular canonical transient receptor potential channel 3, in modulation of endothelial intracellular Ca2+ concentration. Endothelium-derived hyperpolarizing factor-mediated function is Ca2+ dependent, and hyperkalemic cardioplegia/organ preservation solutions impair endothelium-derived hyperpolarizing factor-mediated function. We explored the role of canonical transient receptor potential channel 3 in endothelium-derived hyperpolarizing factor-mediated function and investigated whether modulation of these channels preserves endothelial Ca2+ influx and endothelium-derived hyperpolarizing factor-mediated function under the condition of hyperkalemic/cardioplegic exposure. ⋯ Canonical transient receptor potential channel 3 is involved in endothelium-derived hyperpolarizing factor-mediated function in coronary arteries. Hyperkalemia inhibited canonical transient receptor potential channel 3-mediated Ca2+ influx in endothelial cells. Canonical transient receptor potential channel activation restores Ca2+ influx suppressed by hyperkalemia and prevents dysfunction of endothelium-derived hyperpolarizing factor.
-
J. Thorac. Cardiovasc. Surg. · Oct 2014
Real-time monitoring of spinal cord blood flow with a novel sensor mounted on a cerebrospinal fluid drainage catheter in an animal model.
The aim of our study was to develop a novel monitoring system for spinal cord blood flow (SCBF) to test the efficacy of the SCBF sensor in an animal model. ⋯ We have developed a novel SCBF sensor that could detect real-time changes in spinal cord perfusion in a swine model. The device holds promise to detect imminent ischemia or ensure acceptable blood perfusion in the spinal cord and could further enhance our understanding of spinal cord circulation.