The Journal of thoracic and cardiovascular surgery
-
J. Thorac. Cardiovasc. Surg. · Apr 2022
Postoperative and mid-term hemodynamic changes after replacement of the ascending aorta.
To evaluate aortic distensibility and pulse waveform patterns associated with the ascending aortic aneurysm, and to analyze the postoperative and mid-term hemodynamic changes induced by prosthetic replacement of the ascending aorta. ⋯ This study does not confirm the assumption that substitution of the viscoelastic ascending aorta with a rigid prosthesis can cause serious hemodynamic alterations downstream, because we did not observe a worsening of global aortic distensibility after insertion of a rigid prosthetic aorta. The ascending aortic aneurysm is associated with a pulsus tardus.
-
J. Thorac. Cardiovasc. Surg. · Apr 2022
EditorialXenogeneic support for the recovery of human donor organs.
VIDEO ABSTRACT.
-
J. Thorac. Cardiovasc. Surg. · Apr 2022
Influence of right ventricular pressure and volume overload on right and left ventricular diastolic function.
Ventricular interdependence may account for altered ventricular mechanics in congenital heart disease. The present study aimed to identify differences in load-dependent right ventricular (RV)-left ventricular (LV) interactions in porcine models of pulmonary stenosis (PS) and pulmonary insufficiency (PI) by invasive admittance-derived hemodynamics in conjunction with noninvasive cardiovascular magnetic resonance (CMR). ⋯ The LV exhibits systolic dysfunction and noncompliance with PI. PS is associated with preserved LV systolic function and evidence of some LV diastolic dysfunction. Interventricular interactions influence LV filling and likely account for differential effects of RV pressure and volume overload on LV function.
-
J. Thorac. Cardiovasc. Surg. · Apr 2022
Intrinsic activation of cardiosphere-derived cells enhances myocardial repair.
Permanent loss of cardiomyocytes after myocardial infarction results in irreversible damage to cardiac function. The present study aims to enhance the cardiomyogenic efficiency of cardiosphere-derived cells (CDCs) to develop into large populations of cardiomyocytes by intrinsic activation of cardio-specific differentiation factors (Gata4, Mef2c, Nkx2-5, Hand2, and Tnnt2) by a CRISPR/dCas9 assisted transcriptional enhancement system. ⋯ We have identified endogenous regulatory regions responsible for an intrinsic activation of cardio-specific differentiation factors assisted via a CRISPR/dCas9 gene transcriptional system. The CRISPR/dCas9 system may provide an efficient and effective means of regulating Tnnt2 gene activation within stem cells. Subsequently, this system can be used to enhance transplanted CDCs differentiation potential within ischemic myocardia to better therapeutic outcomes of patients with ischemic heart disease.