The Journal of pharmacology and experimental therapeutics
-
J. Pharmacol. Exp. Ther. · Apr 2005
Positive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor modulators have different impact on synaptic transmission in the thalamus and hippocampus.
Earlier studies showed that positive modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors enhance synaptic responses and facilitate synaptic plasticity. Those studies focused mainly on hippocampal functions. However, AMPA receptors have regionally distinct subunit compositions and thus potencies and efficacies of modulators may vary across the brain. ⋯ In contrast, 100 microM cyclothiazide produced comparable synaptic enhancements in hippocampus and RTN. The regional selectivity of benzamide drugs (ampakines) may be explained, at least in part, by a lower potency at thalamic AMPA receptors, perhaps due to the prevalence of the subunits GluR3 and 4. Although regional preferences of the ampakines were modest in their extent, they may be sufficient to be of relevance when considering future therapeutic applications of such compounds.
-
J. Pharmacol. Exp. Ther. · Mar 2005
Repeated cocaine administration increases membrane excitability of pyramidal neurons in the rat medial prefrontal cortex.
Although the medial prefrontal cortex (mPFC) plays a critical role in cocaine addiction, the effects of chronic cocaine on mPFC neurons remain poorly understood. Here, we performed visualized current-clamp recordings to determine the effects of repeated cocaine administration on the membrane excitability of mPFC pyramidal neurons in rat brain slices. Following repeated cocaine administration (15 mg/kg/day i.p. for 5 days) with a 3-day withdrawal, alterations in membrane properties, including increased input resistance, reduced intensity of intracellular injected currents required for generation of Na(+)-dependent spikes (rheobase), and an increased number of spikes evoked by depolarizing current pulses were observed in mPFC neurons. ⋯ These findings indicate that repeated cocaine administration increased the excitability of mPFC neurons after a short-term withdrawal, possibly via reducing the activity of the potassium inward rectifiers (K(ir)) and voltage-gated K(+) currents. Similar changes were also observed in cocaine-pretreated mPFC neurons after a long-term (2-3 weeks) withdrawal, revealing a persistent increase in excitability. These alterations in mPFC neuronal excitability may contribute to the development of behavioral sensitization and withdrawal effects following chronic cocaine exposure.
-
J. Pharmacol. Exp. Ther. · Mar 2005
A Tyr-W-MIF-1 analog containing D-Pro2 acts as a selective mu2-opioid receptor antagonist in the mouse.
The antagonistic properties of Tyr-d-Pro-Trp-Gly-NH(2) (d-Pro(2)-Tyr-W-MIF-1), a Tyr-Pro-Trp-Gly-NH(2)(Tyr-W-MIF-1) analog, on the antinociception induced by the mu-opioid receptor agonists Tyr-W-MIF-1, [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), Tyr-Pro-Trp-Phe-NH(2) (endomorphin-1), and Tyr-Pro-Phe-Phe-NH(2) (endomorphin-2) were studied in the mouse paw-withdrawal test. d-Pro(2)-Tyr-W-MIF-1 injected intrathecally (i.t.) had no apparent effect on the thermal nociceptive threshold. d-Pro(2)-Tyr-W-MIF-1 (0.1-0.4 nmol) coadministered i.t. showed a dose-dependent attenuation of the antinociception induced by Tyr-W-MIF-1 without affecting endomorphin- or DAMGO-induced antinociception. However, higher doses of d-Pro(2)-Tyr-W-MIF-1 (0.8-1.2 nmol) significantly attenuated endomorphin-1- or DAMGO-induced antinociception, whereas the antinociception induced by endomorphin-2 was still not affected by d-Pro(2)-Tyr-W-MIF-1. ⋯ In contrast, endomorphin-2-induced antinociception is extremely sensitive to naloxonazine. The present results clearly suggest that d-Pro(2)-Tyr-W-MIF-1 is the selective antagonist to be identified for the mu(2)-opioid receptor in the mouse spinal cord. d-Pro(2)-Tyr-W-MIF-1 may also discriminate between Tyr-W-MIF-1-induced antinociception and the antinociception induced by endomorphin-1 or DAMGO, all of which show a preference for the mu(2)-opioid receptor in the spinal cord.
-
J. Pharmacol. Exp. Ther. · Feb 2005
Endogenous regulator of g protein signaling proteins reduce {mu}-opioid receptor desensitization and down-regulation and adenylyl cyclase tolerance in C6 cells.
Chronic exposure of cells to mu-opioid agonists leads to tolerance which can be measured by a reduced ability to activate signaling pathways in the cell. Cell signaling through inhibitory G proteins is negatively regulated by RGS (regulator of G protein signaling) proteins. Here we examine the hypothesis that the GTPase accelerating activity of RGS proteins, by altering the lifetime of Galpha and Gbetagamma, plays a role in the development of cellular tolerance to mu-opioids. ⋯ Exposure to high concentrations of morphine or the peptidic mu-opioid agonist DAMGO led to a tolerance to inhibit adenylyl cyclase activity in both cell types with a rapid (30 min) and a slower component. Using a submaximal concentration of DAMGO to induce a reduced level of tolerance, a shift in the concentration-effect curve for DAMGO to inhibit adenylyl cyclase activity was seen in the cells expressing RGS-insensitive Galpha(o), but not in the cells expressing RGS-sensitive Galpha(o), which can be partly explained by an increased supersensitization of the adenylyl cyclase response. The results show that RGS proteins endogenously expressed in C6 cells reduce agonist-induced mu-opioid receptor desensitization, down-regulation, and sensitivity to tolerance to inhibit adenylyl cyclase activity.
-
J. Pharmacol. Exp. Ther. · Feb 2005
Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophysial nerve terminals.
We characterized the effects of the volatile anesthetic isoflurane on the ion currents that contribute to the action potential (AP) in isolated rat neurohypophysial (NHP) nerve terminals using patch-clamp electrophysiology. Mean resting membrane potential and AP amplitude were -62.3 +/- 4.1 and 69.2 +/- 2.9 mV, respectively, in NHP terminals. Two components of outward K(+) current (I(K)) were identified in voltage-clamp recordings: a transient I(K) and a sustained I(K) with minimal inactivation. ⋯ The isoflurane IC(50) for peak I(K) was 0.83 mM and for sustained I(K) was 0.73 mM, with no effect on the voltage dependence of activation. The results indicate that multiple voltage-gated ion channels (Na(+) > K(+) > Ca(2+)) in NHP terminals, although not typical central nervous system terminals, are inhibited by the volatile general anesthetic isoflurane. The net inhibitory effects of volatile anesthetics on nerve terminal action potentials and excitability result from integrated actions on multiple voltage-gated currents.