Bmc Med Inform Decis
-
Bmc Med Inform Decis · Jan 2010
ReviewA knowledge-based taxonomy of critical factors for adopting electronic health record systems by physicians: a systematic literature review.
The health care sector is an area of social and economic interest in several countries; therefore, there have been lots of efforts in the use of electronic health records. Nevertheless, there is evidence suggesting that these systems have not been adopted as it was expected, and although there are some proposals to support their adoption, the proposed support is not by means of information and communication technology which can provide automatic tools of support. The aim of this study is to identify the critical adoption factors for electronic health records by physicians and to use them as a guide to support their adoption process automatically. ⋯ The critical adoption factors established here provide a sound theoretical basis for research to understand, support, and facilitate the adoption of electronic health records to physicians in benefit of patients.
-
Bmc Med Inform Decis · Jan 2010
Comparative StudyA bootstrap approach for assessing the uncertainty of outcome probabilities when using a scoring system.
Scoring systems are a very attractive family of clinical predictive models, because the patient score can be calculated without using any data processing system. Their weakness lies in the difficulty of associating a reliable prognostic probability with each score. In this study a bootstrap approach for estimating confidence intervals of outcome probabilities is described and applied to design and optimize the performance of a scoring system for morbidity in intensive care units after heart surgery. ⋯ Scoring systems are often designed solely on the basis of discrimination and generalization characteristics, to the detriment of prediction of a trustworthy outcome probability. The present example demonstrates that using a bootstrap method for the estimation of outcome-probability confidence intervals provides useful additional information about score-class statistics, guiding physicians towards the most convenient model for predicting morbidity outcomes in their clinical context.
-
Bmc Med Inform Decis · Jan 2010
A predictive model for the early identification of patients at risk for a prolonged intensive care unit length of stay.
Patients with a prolonged intensive care unit (ICU) length of stay account for a disproportionate amount of resource use. Early identification of patients at risk for a prolonged length of stay can lead to quality enhancements that reduce ICU stay. This study developed and validated a model that identifies patients at risk for a prolonged ICU stay. ⋯ A model that uses patient data from ICU days 1 and 5 accurately predicts a prolonged ICU stay. These predictions are more accurate than those based on ICU day 1 data alone. The model can be used to benchmark ICU performance and to alert physicians to explore care alternatives aimed at reducing ICU stay.