Plos One
-
Reaction time (RT) is one of the most widely used measures of performance in experimental psychology, yet relatively few fMRI studies have included trial-by-trial differences in RT as a predictor variable in their analyses. Using a multi-study approach, we investigated whether there are brain regions that show a general relationship between trial-by-trial RT variability and activation across a range of cognitive tasks. ⋯ The results highlight the importance of modeling trial-by-trial RT in fMRI analyses and raise the possibility that RT variability may provide a powerful probe for investigating the previously elusive white matter BOLD signal.
-
The spatial unity between self and body can be disrupted by employing conflicting visual-somatosensory bodily input, thereby bringing neurological observations on bodily self-consciousness under scientific scrutiny. Here we designed a novel paradigm linking the study of bodily self-consciousness to the spatial representation of visuo-tactile stimuli by measuring crossmodal congruency effects (CCEs) for the full body. ⋯ These data reveal that systematic alterations in the mapping of tactile stimuli occur in a full body illusion and thus establish CCE magnitude as an online performance proxy for subjective changes in global bodily self-consciousness.
-
In this paper, we apply both agent-based models and queuing models to investigate patient access and patient flow through emergency departments. The objective of this work is to gain insights into the comparative contributions and limitations of these complementary techniques, in their ability to contribute empirical input into healthcare policy and practice guidelines. The models were developed independently, with a view to compare their suitability to emergency department simulation. ⋯ The models' utility lies in their ability to provide qualitative insights into the relative sensitivities and impacts of model input parameters, to illuminate scenarios worthy of more complex investigation, and to iteratively validate the models as they continue to be refined and extended. The paper discusses future efforts to refine, extend, and validate the models with more data and real data relative to physical (spatial-topographical) and social inputs (staffing, patient care models, etc.). Real data obtained through proximity location and tracking system technologies is one example discussed.
-
Nociceptive stimuli may evoke brain responses longer than the stimulus duration often partially detected by conventional neuroimaging. Fibromyalgia patients typically complain of severe pain from gentle stimuli. We aimed to characterize brain response to painful pressure in fibromyalgia patients by generating activation maps adjusted for the duration of brain responses. ⋯ The results suggest that data-driven fMRI assessments may complement conventional neuroimaging for characterizing pain responses and that enhancement of brain activation in fibromyalgia patients may be particularly relevant in emotion-related regions.
-
Pseudomonas aeruginosa can establish life-long airways chronic infection in patients with cystic fibrosis (CF) with pathogenic variants distinguished from initially acquired strain. Here, we analysed chemical and biological activity of P. aeruginosa Pathogen-Associated Molecular Patterns (PAMPs) in clonal strains, including mucoid and non-mucoid phenotypes, isolated during a period of up to 7.5 years from a CF patient. Chemical structure by MS spectrometry defined lipopolysaccharide (LPS) lipid A and peptidoglycan (PGN) muropeptides with specific structural modifications temporally associated with CF lung infection. ⋯ Histopathological analysis of lung tissue sections confirmed differences between LPS from early and late P. aeruginosa. Finally, in this study for the first time we unveil how P. aeruginosa has evolved the capacity to evade immune system detection, thus promoting survival and establishing favourable conditions for chronic persistence. Our findings provide relevant information with respect to chronic infections in CF.