Plos One
-
Familial hemophagocytic lymphohistiocytosis (FHL) is a rare disease of infancy or early childhood. To clarify the incidence and subtypes of FHL in Japan, we performed genetic and functional analyses of cytotoxic T lymphocytes (CTLs) in Japanese patients with FHL. ⋯ FHL can be diagnosed and classified on the basis of CTL-mediated cytotoxicity, degranulation activity, and genetic analysis. Based on the data obtained from functional analysis of CTLs, other unknown gene(s) responsible for FHL remain to be identified.
-
An alarming portion of patients develop persistent or chronic pain following surgical procedures, but the mechanisms underlying the transition from acute to chronic pain states are not fully understood. In general, endocannabinoids (ECBs) inhibit nociceptive processing by stimulating cannabinoid receptors type 1 (CB(1)) and type 2 (CB(2)). We have previously shown that intrathecal administration of a CB(2) receptor agonist reverses both surgical incision-induced behavioral hypersensitivity and associated over-expression of spinal glial markers. We therefore hypothesized that endocannabinoid signaling promotes the resolution of acute postoperative pain by modulating pro-inflammatory signaling in spinal cord glial cells. ⋯ Our results demonstrate that endocannabinoid signaling via CB(1) and CB(2) receptors is necessary for the resolution of paw incision-induced behavioral hypersensitivity and for the limitation of pro-inflammatory signaling in astrocytes following surgical insult. Our findings suggest that therapeutic strategies designed to enhance endocannabinoid signaling may prevent patients from developing persistent or chronic pain states following surgery.
-
Appropriate monitoring of the depth of anaesthesia is crucial to prevent deleterious effects of insufficient anaesthesia on surgical patients. Since cardiovascular parameters and motor response testing may fail to display awareness during surgery, attempts are made to utilise alterations in brain activity as reliable markers of the anaesthetic state. Here we present a novel, promising approach for anaesthesia monitoring, basing on recurrence quantification analysis (RQA) of EEG recordings. This nonlinear time series analysis technique separates consciousness from unconsciousness during both remifentanil/sevoflurane and remifentanil/propofol anaesthesia with an overall prediction probability of more than 85%, when applied to spontaneous one-channel EEG activity in surgical patients.
-
The default mode network consists of a set of functionally connected brain regions (posterior cingulate, medial prefrontal cortex and bilateral parietal cortex) maximally active in functional imaging studies under "no task" conditions. It has been argued that the posterior cingulate is important in consciousness/awareness, but previous investigations of resting interactions between the posterior cingulate cortex and other brain regions during sedation and anesthesia have produced inconsistent results. ⋯ This neuroanatomical signature resembles that of non-REM sleep, and may be evidence for a system that reduces its discriminable states and switches into more stereotypic patterns of firing under sedation.
-
Acetaminophen, the major active metabolite of acetanilide in man, has become one of the most popular over-the-counter analgesic and antipyretic agents, consumed by millions of people daily. However, its mechanism of action is still a matter of debate. We have previously shown that acetaminophen is further metabolized to N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z -eicosatetraenamide (AM404) by fatty acid amide hydrolase (FAAH) in the rat and mouse brain and that this metabolite is a potent activator of transient receptor potential vanilloid 1 (TRPV(1)) in vitro. Pharmacological activation of TRPV(1) in the midbrain periaqueductal gray elicits antinociception in rats. It is therefore possible that activation of TRPV(1) in the brain contributes to the analgesic effect of acetaminophen. ⋯ This study shows that TRPV(1) in brain is involved in the antinociceptive action of acetaminophen and provides a strategy for developing central nervous system active oral analgesics based on the coexpression of FAAH and TRPV(1) in the brain.