Plos One
-
Anandamide (AEA), a major endocannabinoid, binds to cannabinoid and vanilloid receptors (CB1, CB2 and TRPV1) and affects many reproductive functions. Nanomolar levels of anandamide are found in reproductive fluids including mid-cycle oviductal fluid. Previously, we found that R(+)-methanandamide, an anandamide analogue, induces sperm releasing from bovine oviductal epithelium and the CB1 antagonist, SR141716A, reversed this effect. ⋯ The pre-incubation with CB1 or TRPV1 antagonists inhibited heparin-induced sperm capacitation; moreover the activity of FAAH was 30% lower in heparin-capacitated spermatozoa as compared to control conditions. This suggests that heparin may increase endogenous anandamide levels. Our findings indicate that anandamide induces sperm capacitation through the activation of CB1 and TRPV1 receptors and could be involved in the same molecular pathway as heparin in bovines.
-
Many studies have shown the antinociceptive effects of cannabinoid (CB) agonists in different models of pain. Herein, we have investigated their relevance in neuropathic pain induced by brachial plexus avulsion (BPA) in mice. ⋯ Our results indicate a relevant role for cannabinoid agonists in BPA, reinforcing their potential therapeutic relevance for the management of chronic pain states.
-
Around 8.8 million children under-five die each year, mostly due to infectious diseases, including malaria that accounts for 16% of deaths in Africa, but the impact of international financing of malaria control on under-five mortality in sub-Saharan Africa has not been examined. ⋯ Along with other key child survival interventions, increased ITNs/IRS coverage has significantly contributed to child mortality reduction since 2002. ITN/IRS scale-up can be more efficiently prioritized to countries where malaria is a major cause of child deaths to save greater number of lives with available resources.
-
In adult mammals, the phenotype of half of all pain-sensing (nociceptive) sensory neurons is tonically modulated by growth factors in the glial cell line-derived neurotrophic factor (GDNF) family that includes GDNF, artemin (ARTN) and neurturin (NRTN). Each family member binds a distinct GFRα family co-receptor, such that GDNF, NRTN and ARTN bind GFRα1, -α2, and -α3, respectively. Previous studies revealed transcriptional regulation of all three receptors in following axotomy, possibly in response to changes in growth factor availability. ⋯ By retrogradely-labeling cutaneous afferents in vivo prior to nerve cut, we demonstrated that GFRα2-positive neurons switch phenotype following injury and begin to express GFRα3 as well as the capsaicin receptor, transient receptor potential vanilloid 1(TRPV1), an important transducer of noxious stimuli. This switch was correlated with down-regulation of Runt-related transcription factor 1 (Runx1), a transcription factor that controls expression of GFRα2 and TRPV1 during development. These studies show that NRTN-responsive neurons are unique with respect to their plasticity and response to injury, and suggest that Runx1 plays an ongoing modulatory role in the adult.
-
Traumatic brain injury (TBI) sets in motion cascades of biochemical changes that result in delayed cell death and altered neuronal architecture. Studies have demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3) effectively reduces apoptosis following a number of stimuli. The Wnt family of proteins, and growth factors are two major factors that regulate GSK-3 activity. In the absence of stimuli, GSK-3 is constitutively active and is complexed with Axin, adenomatous polyposis coli (APC), and casein kinase Iα (CK1α) and phosphorylates ß-Catenin leading to its degradation. Binding of Wnt to Frizzled receptors causes the translocation of GSK-3 to the plasma membrane, where it phosphorylates and inactivates the Frizzled co-receptor lipoprotein-related protein 6 (LRP6). Furthermore, the translocation of GSK-3 reduces ß-Catenin phosphorylation and degradation, leading to ß-Catenin accumulation and gene expression. Growth factors activate Akt, which in turn inhibits GSK-3 activity by direct phosphorylation, leading to a reduction in apoptosis. ⋯ Taken together, our findings suggest that selective inhibition of GSK-3 may offer partial cognitive improvement. As a broad spectrum inhibitor of GSK-3, lithium offers neuroprotection and robust cognitive improvement, supporting its clinical testing as a treatment for TBI.