Plos One
-
(19)F magnetic resonance imaging (MRI) was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared (19)F MRI with iron-enhanced MRI in mice with photothrombosis (PT) at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation. ⋯ Our study shows that vessel occlusion can be followed in vivo by (19)F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement.
-
Virotherapy using oncolytic vaccinia virus strains is one of the most promising new strategies for cancer therapy. In this study, we analyzed for the first time the therapeutic efficacy of the oncolytic vaccinia virus GLV-1h68 in two human hepatocellular carcinoma cell lines HuH7 and PLC/PRF/5 (PLC) in cell culture and in tumor xenograft models. By viral proliferation assays and cell survival tests, we demonstrated that GLV-1h68 efficiently colonized, replicated in, and did lyse these cancer cells in culture. ⋯ Furthermore, GLV-1h68 infection of PLC tumors inhibited the formation of hemorrhagic structures which occur naturally in PLC tumors. Interestingly, we found a strongly reduced vascular density in infected PLC tumors only, but not in the non-hemorrhagic HuH7 tumor model. These data demonstrate that the GLV-1h68 vaccinia virus may have an enormous potential for treatment of human hepatocellular carcinoma in man.
-
In skeletal muscle, the release of calcium (Ca(2+)) by ryanodine sensitive sarcoplasmic reticulum (SR) Ca(2+) release channels (i.e., ryanodine receptors; RyR1s) is the primary determinant of contractile filament activation. Much attention has been focused on calsequestrin (CASQ1) and its role in SR Ca(2+) buffering as well as its potential for modulating RyR1, the L-type Ca(2+) channel (dihydropyridine receptor, DHPR) and other sarcolemmal channels through sensing luminal [Ca(2+)]. The genetic ablation of CASQ1 expression results in significant alterations in SR Ca(2+) content and SR Ca(2+) release especially during prolonged activation. ⋯ The decrease in peak Ca(2+) release flux appears to be solely due to elimination of the slowly decaying component of SR Ca(2+) release, whereas the rapidly decaying component of SR Ca(2+) release is not altered in either amplitude or time course in CASQ1 null fibers. Finally, intra-SR [Ca(2+)] during ligand and voltage activation of RyR1 revealed a significant decrease in the SR[Ca(2+)](free) in intact CASQ1 null fibers and a increase in the release and uptake kinetics consistent with a depletion of intra-SR Ca(2+) buffering capacity. Taken together we have revealed that the genetic ablation of CASQ1 expression results in significant functional deficits consistent with a decrease in the slowly decaying component of SR Ca(2+) release.
-
Mesenchymal stem cells (MSC) are currently strong candidates for cell-based therapies. They are well known for their differentiation potential and immunoregulatory properties and have been proven to be potentially effective in the treatment of a large variety of diseases, including neurodegenerative disorders. Currently there is no treatment that provides consistent long-term benefits for patients with multiple system atrophy (MSA), a fatal late onset α-synucleinopathy. Principally neuroprotective or regenerative strategies, including cell-based therapies, represent a powerful approach for treating MSA. In this study we investigated the efficacy of intravenously applied MSCs in terms of behavioural improvement, neuroprotection and modulation of neuroinflammation in the (PLP)-αsynuclein (αSYN) MSA model. ⋯ To our knowledge this is the first experimental approach of MSC treatment in a transgenic MSA mouse model. Our data suggest that intravenously infused MSCs have a potent effect on immunomodulation and neuroprotection. Our data warrant further studies to elucidate the efficacy of systemically administered MSCs in transgenic MSA models.
-
There is accumulating evidence that the activation of spinal glial cells, especially microglia, is a key event in the pathogenesis of neuropathic pain. However, the inhibition of microglial activation is often ineffective, especially for long-lasting persistent neuropathic pain. So far, neuropathic pain remains largely intractable and a new therapeutic strategy for the pain is still required. ⋯ Our results indicated that the activation of spinal astrocytes was responsible for the late maintenance phase of neuropathic pain in the Seltzer model mice and, therefore, the inhibition of astrocytic activation by Bushi could be a useful therapeutic strategy for treating neuropathic pain.