Plos One
-
Traumatic brain injury (TBI) is a major cause of death and long-term disability worldwide. To date, there are no effective pharmacological treatments for TBI. Recombinant human tissue plasminogen activator (tPA) is the effective drug for the treatment of acute ischemic stroke. ⋯ Animals with TBI were treated intranasally with saline or tPA initiated 7 days after TBI. Compared with saline treatment, subacute intranasal tPA treatment significantly 1) improved cognitive (Morris water maze test) and sensorimotor (footfault and modified neurological severity score) functional recovery in rats after TBI, 2) reduced the cortical stimulation threshold evoking ipsilateral forelimb movement, 3) enhanced neurogenesis in the dentate gyrus and axonal sprouting of the corticospinal tract originating from the contralesional cortex into the denervated side of the cervical gray matter, and 4) increased the level of mature brain-derived neurotrophic factor. Our data suggest that subacute intranasal tPA treatment improves functional recovery and promotes brain neurogenesis and spinal cord axonal sprouting after TBI, which may be mediated, at least in part, by tPA/plasmin-dependent maturation of brain-derived neurotrophic factor.
-
Although the role of autophagy in sepsis has been characterized in several organs, its role in the adaptive immune system remains to be ascertained. This study aimed to investigate the role of autophagy in sepsis-induced T cell apoptosis and immunosuppression, using knockout mice with T cell specific deletion of autophagy essential gene Atg7. ⋯ These results indicated that sepsis led to down-regulation of autophagy in T lymphocytes, which may result in enhanced apoptosis induction and decreased survival in sepsis. Autophagy may therefore play a protective role against sepsis-induced T lymphocyte apoptosis and immunosuppression.
-
Inhibitory factors have been implicated in the failure of remyelination in demyelinating diseases. Myelin associated inhibitors act through a common receptor called Nogo receptor (NgR) that plays critical inhibitory roles in CNS plasticity. Here we investigated the effects of abrogating NgR inhibition in a non-immune model of focal demyelination in adult mouse optic chiasm. ⋯ Our results show that inhibition of NgR facilitate myelin repair in the demyelinated chiasm, with enhanced recruitment of proliferating cells to the lesion site. Thus, antagonizing NgR function could have therapeutic potential for demyelinating disorders such as Multiple Sclerosis.
-
Early brain injury (EBI) plays a key role in the pathogenesis of subarachnoid hemorrhage (SAH). Neuronal apoptosis is involved in the pathological process of EBI. Hydrogen can inhibit neuronal apoptosis and attenuate EBI following SAH. However, the molecular mechanism underlying hydrogen-mediated anti-apoptotic effects in SAH has not been elucidated. In the present study, we aimed to evaluate whether hydrogen alleviates EBI after SAH, specifically neuronal apoptosis, partially via the Akt/GSK3β signaling pathway. ⋯ HS could attenuate neuronal apoptosis in EBI and improve the neurofunctional outcome after SAH, partially via the Akt/GSK3β pathway.
-
Myocardial contractile dysfunction in sepsis is associated with the increased morbidity and mortality. Although the underlying mechanisms of the cardiac depression have not been fully elucidated, an exaggerated inflammatory response is believed to be responsible. Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome is an intracellular platform that is involved in the maturation and release of interleukin (IL)-1β. ⋯ Salient features of this the NLP3 inflammasome/ caspase-1 pathway were confirmed in in vivo models of endotoxemia/sepsis. We found that inhibition of the NLRP3 inflammasome attenuated myocardial dysfunction in mice with LPS and increased the survival rate in mice with feces-induced peritonitis. Our results indicate that the activation of the NLRP3 inflammasome in cardiac fibroblasts is pivotal in the induction of myocardial dysfunction in sepsis.