Plos One
-
Post-operative cognitive dysfunction is associated with morbidity and mortality. However, its neuropathogenesis remains largely to be determined. Neuroinflammation and accumulation of β-amyloid (Aβ) have been reported to contribute to cognitive dysfunction in humans and cognitive impairment in animals. ⋯ Finally, anti-inflammatory drug ibuprofen ameliorated the peripheral surgical wounding-induced cognitive impairment in 18 month-old mice. These data suggested that the peripheral surgical wounding could induce an age-dependent neuroinflammation and elevation of CD33 levels in the hippocampus of mice, which could lead to cognitive impairment in aged mice. Pending further studies, anti-inflammatory therapies may reduce the risk of postoperative cognitive dysfunction in elderly patients.
-
Controlled cortical impact (CCI) models in adult and aged Sprague-Dawley (SD) rats have been used extensively to study medial prefrontal cortex (mPFC) injury and the effects of post-injury progesterone treatment, but the hormone's effects after traumatic brain injury (TBI) in juvenile animals have not been determined. In the present proof-of-concept study we investigated whether progesterone had neuroprotective effects in a pediatric model of moderate to severe bilateral brain injury. ⋯ Our findings suggest that a midline CCI injury to the frontal cortex will reliably produce a moderate TBI comparable to what is seen in the adult male rat and that progesterone can ameliorate the injury-induced deficits.
-
Tert-butylhydroquinone (tBHQ), an Nrf2 activator, has demonstrated neuroprotection against brain trauma and ischemic stroke in vivo. However, little work has been done with respect to its effect on early brain injury (EBI) after subarachnoid hemorrhage (SAH). At the same time, as an oral medication, it may have extensive clinical applications for the treatment of SAH-induced cognitive dysfunction. ⋯ Treatment with tBHQ markedly up-regulated the expression of Keap1, Nrf2, HO-1, NQO1, and GSTα1 after SAH. In conclusion, the administration of tBHQ abated the development of EBI and cognitive dysfunction in this SAH model. Its action was probably mediated by activation of the Keap1/Nrf2/ARE pathway.
-
This study aims to identify that intrathecal (i.t.) injection of dexmedetomidine (Dex) and ropivacaine (Ropi) induces synergistic analgesia on chronic inflammatory pain and is accompanied with corresponding "neuron-astrocytic" alterations. ⋯ i.t. co-delivery of Dex and Ropi shows synergistic analgesia on the chronic inflammatory pain, in which spinal "neuron-astrocytic activation" mechanism may play an important role.
-
Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS), an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI) to study changes in spinal dorsal horn metabolic activity. ⋯ Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level.