Plos One
-
Skeletal muscle wasting in acute lung injury (ALI) patients increases the morbidity and mortality associated with this critical illness. The contribution of laryngeal muscle wasting to these outcomes is unknown, though voice impairments and aspiration are common in intensive care unit (ICU) survivors. We evaluated the intrinsic laryngeal abductor (PCA, posterior cricoarytenoid), adductor (CT, cricothyroid) and limb (EDL, extensor digitorum longus) muscles in a mouse model of ALI. ⋯ The vocal cord abductor (PCA) contains a large proportion of fibers expressing MyHC-EO and is spared from muscle atrophy in ALI mice. The lack of MuRF1 expression in the PCA suggests a previously unrecognized mechanism whereby this muscle is spared from atrophy. Atrophy of the vocal cord adductor (CT) may contribute to the impaired voice and increased aspiration observed in ICU survivors. Further evaluation of the sparing of muscles involved in systemic wasting diseases may lead to potential therapeutic targets for these illnesses.
-
Hemorrhagic shock is a leading cause of trauma-related mortality in both civilian and military settings. Resuscitation often results in reperfusion injury and survivors are susceptible to developing multiple organ failure (MOF). The impact of fed state on the overall response to shock and resuscitation has been explored in some murine models but few clinically relevant large animal models. ⋯ Functional analysis of the response to shock and resuscitation confirmed several typical responses including carbohydrate metabolism, cytokine inflammation, decreased cholesterol synthesis, and apoptosis. Our findings also suggest that the fasting state, relative to a carbohydrate prefed state, displays decreased carbohydrate metabolism, increased cytoskeleton reorganization and decreased inflammation in response to hemorrhagic shock and reperfusion. Evidence suggests that this is a consequence of a shrunken, catabolic state of the liver cells which provides an anti-inflammatory condition that partially mitigates hepatocellar damage.
-
Amylase concentration in respiratory secretions was reported to be a potentially useful marker for aspiration and pneumonia. The aim of this study was to determine accuracy of α-amylase in diagnosing microaspiration in critically ill patients. ⋯ Accuracy of mean α-amylase in diagnosing microaspiration is moderate. Further, when all α-amylase levels were taken into account, α-amylase was inaccurate in diagnosing microaspiration, compared with pepsin.
-
Dividing cells can be detected in the live brain by positron emission tomography or optical imaging. Here we apply proton magnetic resonance spectroscopy (1HMRS) and a widely used spectral fitting algorithm to characterize the effect of increased neurogenesis after electroconvulsive shock in the live rodent brain via spectral signatures representing mobile lipids resonating at ∼1.30 ppm. In addition, we also apply the same 1HMRS methodology to metabolically profile glioblastomas with actively dividing cells growing in RCAS-PDGF mice. ⋯ Metabolic profiling using 1HMRS in combination with LCModel analysis did not reveal correlation between Lip13a+Lip13b spectral signatures and an increase in neurogenesis in adult rat hippocampus after ECS. However, increases in Lip13a+Lip13b were evident in glioblastomas suggesting that a higher density of actively dividing cells and/or the presence of lipid droplets is necessary for LCModel to reveal mobile lipids.
-
Accurate, continuous, left ventricular stroke volume (SV) measurements can convey large amounts of information about patient hemodynamic status and response to therapy. However, direct measurements are highly invasive in clinical practice, and current procedures for estimating SV require specialized devices and significant approximation. ⋯ The method presented demonstrates that the magnitude and trends of SV can be accurately estimated from pressure waveforms alone, without the need for identification of complex physiological metrics where strength of correlations may vary significantly from patient to patient.