Plos One
-
Breathing the inert gas Xenon (Xe) enhances hypothermic (HT) neuroprotection after hypoxia-ischemia (HI) in small and large newborn animal models. The underlying mechanism of the enhancement is not yet fully understood, but the combined effect of Xe and HT could either be synergistic (larger than the two effects added) or simply additive. A previously published study, using unilateral carotid ligation followed by hypoxia in seven day old (P7) rats, showed that the combination of mild HT (35°C) and low Xe concentration (20%), both not being neuroprotective alone, had a synergistic effect and was neuroprotective when both were started with a 4 h delay after a moderate HI insult. To examine whether another laboratory could confirm this finding, we repeated key aspects of the study. ⋯ Combining two treatments that individually were ineffective (delayed HT35°C and delayed Xe20%) did not exert neuroprotection when combined, and therefore did not show a synergistic treatment effect.
-
A major outbreak of canine distemper virus (CDV) in Danish farmed mink (Neovison vison) started in the late summer period of 2012. At the same time, a high number of diseased and dead wildlife species such as foxes, raccoon dogs, and ferrets were observed. To track the origin of the outbreak virus full-length sequencing of the receptor binding surface protein hemagglutinin (H) was performed on 26 CDV's collected from mink and 10 CDV's collected from wildlife species. ⋯ The outbreak viruses clustered phylogenetically in the European lineage and were highly identical to wildlife viruses from Germany and Hungary (99.29% - 99.62%). The study furthermore revealed that fleas (Ceratophyllus sciurorum) contained CDV and that vertical transmission of CDV occurred in a wild ferret. The study provides evidence that wildlife species, such as foxes, play an important role in the transmission of CDV to farmed mink and that the virus may be maintained in the wild animal reservoir between outbreaks.
-
Pulmonary infections caused by nontuberculous mycobacteria (NTM) are an increasing problem in individuals with chronic lung conditions and current therapies are lacking. We investigated the activity of liposomal amikacin for inhalation (LAI) against NTM in vitro as well as in a murine model of respiratory infection. Macrophage monolayers were infected with three strains of Mycobacterium avium, two strains of Mycobacterium abscessus, and exposed to LAI or free amikacin for 4 days before enumerating bacterial survival. ⋯ In vivo, inhaled LAI demonstrated similar effectiveness to a ∼25% higher total dose of parenterally administered amikacin at reducing M. avium in the lungs when compared to inhaled saline. Additionally, there was no acquired resistance to amikacin observed after the treatment regimen. The data suggest that LAI has the potential to be an effective therapy against NTM respiratory infections in humans.
-
Resistance to imatinib (Gleevec®) in cancer cells is frequently because of acquired point mutations in the kinase domain of BCR-ABL. Ponatinib, also known as AP24534, is an oral multi-targeted tyrosine kinase inhibitor (TKI), and it has been investigated in a pivotal phase 2 clinical trial. The histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid) has been evaluated for its significant clinical activity in hematological malignancies. ⋯ We investigated the difference in the efficacy of ponatinib and vorinostat by using ponatinib-resistant Ba/F3 cells. Combined treatment of ponatinib-resistant cells with ponatinib and vorinostat caused a significant increase in cytotoxicity. Thus, combined administration of ponatinib and vorinostat may be a powerful strategy against BCR-ABL mutant cells and could enhance the cytotoxic effects of ponatinib in those BCR-ABL mutant cells.
-
The endocannabinoid anandamide (AEA) is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH). Fatty acid binding proteins (FABPs) are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs) to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. ⋯ The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptor alpha (PPARα) and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics.