Plos One
-
Two-year, prospective cohort data from the Japan epidemiological research of occupation-related back pain study in urban settings were used for this analysis. ⋯ Psychosocial factors are important risk factors for persistent LBP in urban Japanese workers. It may be necessary to take psychosocial factors into account, along with physical work demands, to reduce LBP related disability.
-
Effective target regions for deep brain stimulation (DBS) in Parkinson's disease (PD) have been well characterized. We sought to study whether the measured Cartesian coordinates of an implanted DBS lead are predictive of motor outcome(s). We tested the hypothesis that the position and trajectory of the DBS lead relative to the mid-commissural point (MCP) are significant predictors of clinical outcomes. We expected that due to neuroanatomical variation among individuals, a simple measure of the position of the DBS lead relative to MCP (commonly used in clinical practice) may not be a reliable predictor of clinical outcomes when utilized alone. ⋯ The results of the study showed that a simple measure of the position of the DBS lead relative to the MCP is not significantly correlated with PD motor outcomes, presumably because this method fails to account for individual neuroanatomical variability. However, there is broad agreement that motor outcomes depend strongly on lead location. The results suggest the need for more detailed identification of stimulation location relative to anatomical targets.
-
The soluble urokinase plasminogen activator receptor (suPAR) has been recently recognized as a potential biological marker of various disease states, but the impact of a major surgical intervention on the suPAR level has not yet been established. The aim of our study was to investigate if the induction of a systemic inflammatory reaction in response to cardiopulmonary bypass would be accompanied by an increase in the plasma suPAR level. ⋯ There was no change in the suPAR level observed in patients subjected to elective cardiac coronary artery bypass surgery and CPB, despite activation of a systemic inflammatory reaction.
-
By aggregating self-reported health statuses across millions of users, we seek to characterize the variety of health information discussed in Twitter. We describe a topic modeling framework for discovering health topics in Twitter, a social media website. This is an exploratory approach with the goal of understanding what health topics are commonly discussed in social media. ⋯ ATAM discovered 13 coherent clusters of Twitter messages, some of which correlate with seasonal influenza (r = 0.689) and allergies (r = 0.810) temporal surveillance data, as well as exercise (r = .534) and obesity (r = -.631) related geographic survey data in the United States. These results demonstrate that it is possible to automatically discover topics that attain statistically significant correlations with ground truth data, despite using minimal human supervision and no historical data to train the model, in contrast to prior work. Additionally, these results demonstrate that a single general-purpose model can identify many different health topics in social media.
-
Although portable instruments have been used in the assessment of sleep disturbance for patients with low back pain (LBP), the accuracy of the instruments in detecting sleep/wake episodes for this population is unknown. This study investigated the criterion validity of two portable instruments (Armband and Actiwatch) for assessing sleep disturbance in patients with LBP. 50 patients with LBP performed simultaneous overnight sleep recordings in a university sleep laboratory. All 50 participants were assessed by Polysomnography (PSG) and the Armband and a subgroup of 33 participants wore an Actiwatch. ⋯ Sensitivity was 0.90 for both instruments and specificity was 0.54 and 0.67 and PABAK of 0.69 and 0.77 for the Armband and Actiwatch respectively. The ICC (95%CI) was 0.76 (0.61 to 0.86) and 0.80 (0.46 to 0.92) for total sleep time, 0.52 (0.29 to 0.70) and 0.55 (0.14 to 0.77) for sleep efficiency, 0.64 (0.45 to 0.78) and 0.52 (0.23 to 0.73) for wake after sleep onset and 0.13 (-0.15 to 0.39) and 0.33 (-0.05 to 0.63) for sleep onset latency, for the Armband and Actiwatch, respectively. The findings showed that both instruments have varied criterion validity across the sleep parameters from excellent validity for measures of total sleep time, good validity for measures of sleep efficiency and wake after onset to poor validity for sleep onset latency.