Plos One
-
Randomized Controlled Trial
Implementing direct access to low-dose computed tomography in general practice--method, adaption and outcome.
Early detection of lung cancer is crucial as the prognosis depends on the disease stage. Chest radiographs has been the principal diagnostic tool for general practitioners (GPs), but implies a potential risk of false negative results, while computed tomography (CT) has a higher sensitivity. The aim of this study was to describe the implementation of direct access to low-dose CT (LDCT) from general practice. ⋯ Of all patients referred to LDCT, 2.3% were diagnosed with lung cancer with a favourable stage distribution. Half of the referred patients needed additional diagnostic work-up. There was an association between participation in CME and use of CT scan. The proportion of cancers diagnosed through the usual fast-track evaluation was 2.2 times higher in the group of CME-participating GPs. The question remains if primary care case-finding with LDCT is a better option for patients having signs and symptoms indicating lung cancer than a screening program. Whether open access to LDCT may provide earlier diagnosis of lung cancer is yet unknown and a randomised trial is required to assess any effect on outcome.
-
Clinical Trial
Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation.
Spinal cord stimulation (SCS) is an alternative or adjunct therapy to treat chronic pain, a prevalent and clinically challenging condition. Although SCS has substantial clinical success, the therapy is still prone to failures, including lead breakage, lead migration, and poor pain relief. The goal of this study was to develop a computational model of SCS and use the model to compare activation of neural elements during intradural and extradural electrode placement. ⋯ Increased stimulation efficiency is expected to increase the battery life of implantable pulse generators, increase the recharge interval of rechargeable implantable pulse generators, and potentially reduce stimulator volume. The greater selectivity of intradural stimulation may improve the success rate of SCS by mitigating the sensitivity of pain relief to malpositioning of the electrode. The outcome of this effort is a better quantitative understanding of how intradural electrode placement can potentially increase the selectivity and efficiency of SCS, which, in turn, provides predictions that can be tested in future clinical studies assessing the potential therapeutic benefits of intradural SCS.
-
We discovered that serious issues could arise that may complicate interpretation of metabolomic data when identical samples are analyzed at more than one NMR facility, or using slightly different NMR parameters on the same instrument. This is important because cross-center validation metabolomics studies are essential for the reliable application of metabolomics to clinical biomarker discovery. To test the reproducibility of quantified metabolite data at multiple sites, technical replicates of urine samples were assayed by 1D-(1)H-NMR at the University of Alberta and the University of Michigan. ⋯ Specifically, saturation power levels greatly influenced peak height intensities in a frequency-dependent manner for a number of metabolites, which markedly impacted the quantification of metabolites. We also investigated other NMR parameters to determine their effects on further quantitative accuracy and precision. Collectively, these findings highlight the importance of and need for consistent use of NMR parameter settings within and across centers in order to generate reliable, reproducible quantified NMR metabolomics data.
-
Transpulmonary thermodilution allows the measurement of cardiac index for high risk surgical patients. Oncologic patients often have a central venous access (port-a-catheter) for chronic treatment. The validity of the measurement by a port-a-catheter of the absolute cardiac index and the detection of changes in cardiac index induced by fluid challenge are unknown. ⋯ The transpulmonary thermodilution by a port-a-catheter is reliable for absolute values estimation of cardiac index and for measurement of the variation after fluid challenge.
-
Comparative Study
Differentially expressed miRNAs in Ewing sarcoma compared to mesenchymal stem cells: low miR-31 expression with effects on proliferation and invasion.
Ewing sarcoma, the second most common bone tumor in children and young adults, is an aggressive malignancy with a strong potential to metastasize. Ewing sarcoma is characterised by translocations encoding fusion transcription factors with an EWSR1 transactivation domain fused to an ETS family DNA binding domain. microRNAs are post-transcriptional regulators of gene expression and aberrantly expressed microRNAs have been identified as tumor suppressors or oncogenes in most cancer types. To identify potential oncogenic and tumor suppressor microRNAs in Ewing sarcoma, we determined and compared the expression of 377 microRNAs in 40 Ewing sarcoma biopsies, 6 Ewing sarcoma cell lines and mesenchymal stem cells, the putative cellular origin of Ewing sarcoma, from 6 healthy donors. ⋯ Two of four miR-31 transfected Ewing sarcoma cell lines showed a significantly reduced proliferation (19% and 33% reduction) due to increased apoptosis in one and increased length of G1-phase in the other cell line. All three tested miR-31 transfected Ewing sarcoma cell lines showed significantly reduced invasiveness (56% to 71% reduction). In summary, we identified 35 microRNAs differentially expressed in Ewing sarcoma and demonstrate that miR-31 affects proliferation and invasion of Ewing sarcoma cell lines in ex vivo assays.