Plos One
-
Pain-related interactions between primary motor (M1) and primary sensory (S1) cortex are poorly understood. In particular, the time-course over which S1 processing and corticomotor output are altered in association with muscle pain is unclear. We aimed to examine the temporal profile of altered processing in S1 and altered corticomotor output with finer temporal resolution than has been used previously. ⋯ These data suggest S1 processing and corticomotor output may be co-modulated in association with muscle pain. Interestingly, this is in contrast to previous observations. This discrepancy may best be explained by an effect of the SEP test stimulus on the corticomotor pathway. This novel finding is critical to consider in experimental design and may be potentially useful to consider as an intervention for the management of pain.
-
Postural control during rapid movements may be impaired due to musculoskeletal pain. The purpose of this study was to investigate the effect of experimental knee-related muscle pain on the center of pressure (CoP) displacement in a reaction time task condition. ⋯ The central nervous system in healthy individuals was sufficiently robust in maintaining the APA characteristics during pain, although the displacement of net and ipsilateral CoP in the medial-lateral and anterior-posterior directions during unilateral fast shoulder movement was altered.
-
To ascertain accurate measurements of, and the relationships between, the normative parameters of the tracheobronchial trees in the Chinese population using multi-slice spiral computed tomography (CT) and multi-planar reconstruction (MPR). ⋯ The normal reference values and the likely ranges of distribution of the tracheobronchial trees in the Chinese population have been established. Significant gender differences exist in the dimensions of the trachea, with the exception of the Right upper bronchial angle (RUA).
-
Selecting fusion levels based on the Luk et al criteria for operative management of thoracic adolescent idiopathic scoliosis (AIS) with hook and hybrid systems yields acceptable curve correction and balance parameters; however, it is unknown whether utilizing a purely pedicle screw strategy is effective. Utilizing the fulcrum bending radiographic (FBR) to assess curve flexibility to select fusion levels, the following study assessed the efficacy of pedicle screw fixation with alternate level screw strategy (ALSS) for thoracic AIS. ⋯ This is the first report to note that using the FBR for decision-making in selecting fusion levels in thoracic AIS patients undergoing management with pedicle screw constructs (e.g. ALSS) is a cost-effective strategy that can achieve clinically-relevant deformity correction that is maintained and without compromising fusion levels.
-
Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic "face" surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. ⋯ The material and pliability of the model "face" surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies.