Plos One
-
[This corrects the article DOI: 10.1371/journal.pone.0021447.].
-
Sepsis-induced acute kidney injury (AKI) contributes to the high mortality and morbidity in patients. Although the pathogenesis of AKI during sepsis is poorly understood, it is well accepted that plasminogen activator inhibitor-1 (PAI-1) and vitronectin (Vn) are involved in AKI. However, the functional cooperation between PAI-1 and Vn in septic AKI has not been completely elucidated. ⋯ Furthermore, a lack of PAI-1 or PAI-1-Vn interaction was found to be associated with an increase in activated Protein C (aPC) in plasma. These results demonstrate that PAI-1, through its interaction with Vn, exerts multiple deleterious mechanisms to induce AKI. Therefore, targeting of the PAI-1-Vn interaction in kidney represents an appealing therapeutic strategy for the treatment of septic AKI by not only altering the fibrinolytic capacity but also regulating PC activity.
-
Pain catastrophising is an exaggerated cognitive attitude implemented during pain or when thinking about pain. Catastrophising was previously associated with increased pain severity, emotional distress and disability in chronic pain patients, and is also a contributing factor in the development of neuropathic pain. To investigate the neural basis of how pain catastrophising affects pain observed in others, we acquired EEG data in groups of participants with high (High-Cat) or low (Low-Cat) pain catastrophising scores during viewing of pain scenes and graphically matched pictures not depicting imminent pain. ⋯ Results suggest augmented activation of limbic cortex and higher order pain processing cortical regions during the late processing period in high pain catastrophisers viewing both types of pictures. This pattern of cortical activations is consistent with the distorted and magnified cognitive appraisal of pain threats in high pain catastrophisers. In contrast, high pain catastrophising individuals exhibit a diminished response during the mid-latency period when attentional and top-down resources are ascribed to observed pain.
-
The placebo effect is a component of any response to a treatment (effective or inert), but we still ignore why it exists. We propose that placebo analgesia is a facet of pain perception, others being the modulating effects of emotions, cognition and past experience, and we suggest that a computational understanding of pain may provide a unifying explanation of these phenomena. ⋯ Our model not only agrees with placebo analgesia, but also predicts that learning can affect pain perception in other unexpected ways, which experimental evidence supports. Finally, the model can also reflect the strategies used by pain perception, showing that modulation by disparate factors is intrinsic to the pain process.
-
Neuropathic pain is common in peripheral nerve injury and often fails to respond to ordinary medication. Here, we investigated whether the two novel epigallocatechin-3-gallate (EGCG) polyphenolic derivatives, compound 23 and 30, reduce the neuropathic pain in mice chronic constriction nerve injury (CCI). First, we performed a dose-response study to evaluate nociceptive sensation after administration of EGCG and its derivatives 23 and 30, using the Hargreaves test at 7 and 21 days after injury (dpi). ⋯ We also strongly detected a decrease of synaptic plasma membrane levels of N-methyl-D-asparte receptor 2B in CCI-mice treated with compound 30 at 56 dpi. Altogether, compound 30 reduced the chronic thermal hyperalgesia induced by CCI better than the natural compound EGCG. Thus, our findings provide a rationale for the preclinical development of compound 30 as an agent to treat neuropathic pain.