Plos One
-
Functional selectivity (or biased agonism) is a property exhibited by some G protein-coupled receptor (GPCR) ligands, which results in the modulation of a subset of a receptor's signaling capabilities and more precise control over complex biological processes. The dopamine D2 receptor (D2R) exhibits pleiotropic responses to the biogenic amine dopamine (DA) to mediate complex central nervous system functions through activation of G proteins and β-arrestins. D2R is a prominent therapeutic target for psychological and neurological disorders in which DA biology is dysregulated and targeting D2R with functionally selective drugs could provide a means by which pharmacotherapies could be developed. ⋯ Another set of mutations that result in G protein bias was identified that demonstrated that full agonists can impart unique activation patterns, and provided further credence to the concept of ligand texture. Finally, the contributions and interplay between different transducers indicated that G proteins are not aberrantly activated, and that receptor kinase and β-arrestin activities are inextricably linked. These data provide a thorough elucidation of the feasibility and malleability of D2R functional selectivity and point to means by which novel in vivo therapies could be modeled.
-
Despite high prevalence of human papillomavirus (HPV) infection and cervical cancer in Indian women, no study has been done in tribal populations whose socio-sexual lifestyle is different. Therefore, HPV screening has been carried out in pre-adolescent, adolescent and young adult tribal girls using self-collected urine samples. ⋯ This is a first study showing significantly a very high prevalence of HPV infection in adolescent and young adult tribal girls possibly due to different socio-sexual behavior, indicating a serious health concern for Indian tribal women.
-
Plasmid-mediated AmpC beta-lactamase-producing (pAmpC) Enterobacteriaceae are increasing worldwide, difficult to identify and often confounded with extended-spectrum beta-lactamase (ESBL) producers. The low prevalence precludes routine universal admission screening. Therefore, we evaluated potential risk factors for carriage of pAmpC-producing Enterobacteriaceae that would allow targeted screening to improve yield and reduce cost. ⋯ This study could not identify a clinical profile that would allow targeted screening for pAmpC-producing Enterobacteriaceae when compared to ESBL carriers. Because empiric antimicrobial therapy was inappropriate in more than 30%, rapid identification of pAmpC carriers is needed. New microbiological methods are therefore required to simplify rapid and reliable detection of pAmpC carriers.
-
Randomized Controlled Trial
The Influence of Dietary Protein Intake on Mammalian Tryptophan and Phenolic Metabolites.
Although there has been increasing interest in the use of high protein diets, little is known about dietary protein related changes in the mammalian metabolome. We investigated the influence of protein intake on selected tryptophan and phenolic compounds, derived from both endogenous and colonic microbial metabolism. Furthermore, potential inter-species metabolic differences were studied. ⋯ In mice, significant differences were noted in plasma tryptophan (P 0.03), indole-3-acetic acid (P 0.02), p-cresyl glucuronide (P 0.03), phenyl sulfate (P 0.004) and phenylacetic acid (P 0.01). Thus, dietary protein intake affects plasma levels and generation of various mammalian metabolites, suggesting an influence on both endogenous and colonic microbial metabolism. Metabolite changes are dissimilar between human subjects and mice, pointing to inter-species metabolic differences with respect to protein intake.
-
Neonatal exposure to isoflurane may induce long-term memory impairment in mice. Histone acetylation is an important form of chromatin modification that regulates the transcription of genes required for memory formation. This study investigated whether neonatal isoflurane exposure-induced neurocognitive impairment is related to dysregulated histone acetylation in the hippocampus and whether it can be attenuated by the histone deacetylase (HDAC) inhibitor trichostatin A (TSA). ⋯ Memory impairment induced by repeated neonatal exposure to isoflurane is associated with dysregulated histone H4K12 acetylation in the hippocampus, which probably affects downstream c-Fos gene expression following CFC training. The HDAC inhibitor TSA successfully rescued impaired contextual fear memory, presumably by promoting histone acetylation and histone acetylation-mediated gene expression.