Plos One
-
In previous work in young women aged 15-30 years we measured breast water and fat using MR and obtained blood for hormone assays on the same day in the follicular phase of the menstrual cycle. Only serum growth hormone levels and sex hormone binding globulin (SHBG) were significantly associated with percent breast water after adjustment for covariates. The sex hormones estradiol, progesterone and testosterone were not associated with percent water in the breast in the follicular phase of the menstrual cycle. In the present study we have examined the association of percent breast water with serum levels of sex hormones in both follicular and luteal phase of the menstrual cycle. ⋯ Our results from young women aged 15-30 years add to the evidence that the extent of fibroglandular tissue in the breast that is reflected in both mammographic density and breast water is associated positively with higher serum levels of SHBG, but not with higher levels of sex hormones.
-
Cuprizone administration in mice provides a reproducible model of demyelination and spontaneous remyelination, and has been useful in understanding important aspects of human disease, including multiple sclerosis. In this study, we apply high spatial resolution quantitative MRI techniques to establish the spatio-temporal patterns of acute demyelination in C57BL/6 mice after 6 weeks of cuprizone administration, and subsequent remyelination after 6 weeks of post-cuprizone recovery. MRI measurements were complemented with Black Gold II stain for myelin and immunohistochemical stains for associated tissue changes. ⋯ Whole-brain parametric mapping across time is essential for gaining a real understanding of disease processes in-vivo. MTR increases in healthy mice throughout adolescence and adulthood were observed, illustrating the need for appropriate age-matched controls. Elucidating the unique and site-specific demyelination in the cuprizone model may offer new insights into in mechanisms of both damage and repair in human demyelinating diseases.
-
Neisseria meningitidis is a commensal bacterium of the human nasopharynx. In rare cases, it penetrates the mucosa, entering the blood stream and causing various forms of disease. Meningococcal conjugate vaccines can prevent invasive disease not only by direct effect in vaccinated individuals but also by herd protection, preventing acquisition of carriage, which interrupts transmission and leads to protection of unvaccinated persons. ⋯ Factors associated with carriage were having only one, shared, bedroom in the household (PR, 2.02; 95% CI, 0.99-4.12, p = 0.05); the mother being the only smoker in the home (PR, 2.48; 95% CI, 1.16-5.29; p = 0.01); and going to pubs/parties more than 5 times/month (PR, 2.61; 95% CI, 1.38-4.92; p = 0.02). Our findings show that the N. meningitidis carriage rate in adolescents from Salvador, Bahia, is low and is potentially influenced by the low prevalence of N. meningitidis genogroup C. However, continued surveillance is important to identify changes in the dynamics of N. meningitidis, including the emergence of diseases due to a non-C serogroup.
-
A prevailing neuroinflammation hypothesis is that increased production of proinflammatory cytokines contributes to progressive neuropathology, secondary to the primary damage caused by a traumatic brain injury (TBI). In support of the hypothesis, post-injury interventions that inhibit the proinflammatory cytokine surge can attenuate the progressive pathology. However, other post-injury neuroinflammatory responses are key to endogenous recovery responses. ⋯ Low dose (0.5-5.0 mg/kg) administration of MW151 suppresses interleukin-1 beta (IL-1β) levels in the cortex while sparing reactive microglia and astrocyte responses. To probe molecular mechanisms, we used live cell imaging of the BV-2 microglia cell line to demonstrate that MW151 does not affect proliferation, migration, or phagocytosis of the cells. Our results provide insight into the roles of glial responses to brain injury and indicate the feasibility of using appropriate dosing for selective therapeutic modulation of injurious IL-1β increases while sparing other glial responses to injury.
-
Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and infectious death in adults worldwide. A non-human primate model is needed to study the molecular mechanisms that underlie the development of severe pneumonia, identify diagnostic tools, explore potential therapeutic targets, and test clinical interventions during pneumococcal pneumonia. ⋯ We have developed a novel animal model for severe pneumococcal pneumonia that mimics the clinical presentation, inflammatory response, and infection kinetics seen in humans. This is a novel model to test vaccines and treatments, measure biomarkers to diagnose pneumonia, and predict outcomes.