Plos One
-
The PALB2 gene, also known as FANCN, forms a bond and co-localizes with BRCA2 in DNA repair. Germline mutations in PALB2 have been identified in approximately 1% of familial breast cancer and 3-4% of familial pancreatic cancer. The goal of this study was to determine the prevalence of PALB2 mutations in a population of BRCA1/BRCA2 negative breast cancer patients selected from either a personal or family history of pancreatic cancer. ⋯ The prevalence rate of PALB2 mutations in non-BRCA1/BRCA2 breast/ovarian cancer families, selected from either a personal or family pancreatic cancer history, is similar to that previously described for unselected breast/ovarian cancer families. Future research directed towards identifying other gene(s) involved in the development of breast/pancreatic cancer families is required.
-
On-call duty among medical interns is characterized by sleep deprivation and stressful working conditions, both of which alter cardiac autonomic modulation. We hypothesized that sleep stability decreased in medical interns during on-call duty. We used cardiopulmonary-coupling (CPC) analysis to test our hypothesis. ⋯ Medical interns suffer disrupted sleep stability and continuity during on-call night shifts. The ECG-based CPC analysis provides a straightforward means to quantify sleep quality and stability in medical staff performing shift work under stressful conditions.
-
Nasal nitric oxide (nNO) measurement is an established first line test in the work-up for primary ciliary dyskinesia (PCD). Tidal breathing nNO (TB-nNO) measurements require minimal cooperation and are potentially useful even in young children. Hand-held NO devices are becoming increasingly widespread for asthma management. Therefore, we chose to assess whether hand-held TB-nNO measurements reliably discriminate between PCD, and Healthy Subjects (HS) and included Cystic Fibrosis (CF) patients as a disease control group known to have intermediate nNO levels. ⋯ Hand-held TB-nNO discriminates significantly between PCD, CF and HS and shows promising potential as a widespread targeted case-finding tool for PCD, although further studies are warranted before implementation.
-
Axon remyelination in the central nervous system requires oligodendrocytes that produce myelin. Failure of this repair process is characteristic of neurodegeneration in demyelinating diseases such as multiple sclerosis, and it remains unclear how the lesion microenvironment contributes to decreased remyelination potential of oligodendrocytes. ⋯ These in vitro findings support a possible in vivo scenario whereby pH gradients attract OPCs toward acidic lesions, but resulting reduction in OPC survival and motility in acid decreases progress toward demyelinated axons and is further compounded by decreased differentiation into myelin-producing oligodendrocytes. As these processes are integral to OPC response to nerve demyelination, our results suggest that lesion acidity could contribute to decreased remyelination.
-
Parietal networks are hypothesised to play a central role in the cortical information synthesis that supports conscious experience and behavior. Significant reductions in parietal level functional connectivity have been shown to occur during general anesthesia with propofol and a range of other GABAergic general anesthetic agents. Using two analysis approaches (1) a graph theoretic analysis based on surrogate-corrected zero-lag correlations of scalp EEG, and (2) a global coherence analysis based on the EEG cross-spectrum, we reveal that sedation with the NMDA receptor antagonist nitrous oxide (N2O), an agent that has quite different electroencephalographic effects compared to the inductive general anesthetics, also causes significant alterations in parietal level functional networks, as well as changes in full brain and frontal level networks. ⋯ In contrast reductions in frontal network functional connectivity were optimally discriminated using a common-reference derivation (reductions on the order of 10%), indicating that the NMDA antagonist N2O induces spatially coherent and widespread perturbations in frontal activity. Our findings not only give important weight to the idea of agent invariant final network changes underlying drug-induced reductions in consciousness, but also provide significant impetus for the application and development of multiscale functional analyses to systematically characterise the network level cortical effects of NMDA receptor related hypofunction. Future work at the source space level will be needed to verify the consistency between cortical network changes seen at the source level and those presented here at the EEG sensor space level.