Plos One
-
In basal ganglia a significant subset of GABAergic medium spiny neurons (MSNs) coexpress D1 and D2 receptors (D1R and D2R) along with the neuropeptides dynorphin (DYN) and enkephalin (ENK). These coexpressing neurons have been recently shown to have a region-specific distribution throughout the mesolimbic and basal ganglia circuits. While the functional relevance of these MSNs remains relatively unexplored, they have been shown to exhibit the unique property of expressing the dopamine D1-D2 receptor heteromer, a novel receptor complex with distinct pharmacology and cell signaling properties. ⋯ The identification of a MSN with dual inhibitory and excitatory intrinsic functions provides new insights into the neuroanatomy of the basal ganglia and demonstrates a novel source of glutamate in this circuit. Furthermore, the demonstration of a dopamine receptor complex with the potential to differentially regulate the expression of proteins directly involved in GABAergic inhibitory or glutamatergic excitatory activation in VTA and SN may potentially provide new insights into the regulation of dopamine neuron activity. This could have broad implications in understanding how dysregulation of neurotransmission within basal ganglia contributes to dopamine neuronal dysfunction.
-
Toll-like receptor (TLR)4 agonists are known potent immunostimulatory compounds. These compounds can be formulated as part of novel adjuvants to enhance vaccine medicated immune responses. However, the contribution of the formulation to the innate in vivo activity of TLR4 agonist compounds is not well understood. ⋯ While GLA and GLA-SE activate a large number of shared innate genes and proteins, GLA-SE induces a quantitatively and qualitatively stronger response than GLA, SE or alum. The genes and proteins upregulated could be used to facilitate selection of appropriate adjuvant doses in vaccine formulations.
-
The tumor-specific EGFR deletion mutant, EGFRvIII, is characterised by ligand-independent constitutive signalling. Tumors expressing EGFRvIII are resistant to current EGFR-targeted therapy. The frequency of EGFRvIII in head and neck squamous cell carcinoma (HNSCC) is disputed and may vary by specific sub-site. The purpose of this study was to measure the occurrence of EGFRvIII mutations in a specific HNSCC subsite, oral squamous cell carcinoma (OSCC), using a novel real-time PCR assay. ⋯ Our results suggest that the EGFRvIII mutation is rare in OSCC and corroborate previous reports of EGFRvIII expression only in tumors with extreme over-expression of EGFR. We conclude that EGFRvIII-specific therapies may not be ideally suited as first-line treatment in OSCC. Furthermore, highly specific and sensitive methods, such as the real-time RT-PCR assay and AQUAnalysis® described here, will provide accurate assessment of EGFR mutation frequency and EGFR expression, and will facilitate the selection of optimal tailored therapies for OSCC patients.
-
The renal tubule is a major route of clearance of uric acid, a product of purine metabolism. The links between reduced glomerular filtration rate (GFR), hyperuricemia, and gout in the general population are not well understood. The objective of the present study was to estimate prevalence of gout and hyperuricemia among people with impaired GFR in the US general population. ⋯ Renal glomerular function is an important risk factor for gout. The prevalence of hyperuricemia and gout increases with decreasing glomerular function independent of other factors. This association is non-linear and an eGFR of 60 ml/min/1.73 m(2) appears to be a threshold for the dramatic increase in the prevalence of gout.
-
Prior studies of appetite regulatory networks, primarily in rodents, have established that targeted electrical stimulation of ventromedial hypothalamus (VMH) can alter food intake patterns and metabolic homeostasis. Consideration of this method for weight modulation in humans with severe overeating disorders and morbid obesity can be further advanced by modeling procedures and assessing endpoints that can provide preclinical data on efficacy and safety. In this study we adapted human deep brain stimulation (DBS) stereotactic methods and instrumentation to demonstrate in a large animal model the modulation of weight gain with VMH-DBS. ⋯ Throughout this 2 mo DBS period, all animals consumed the doubled amount of daily food. However, the animals that had received VMH-DBS showed a cumulative weight gain (6.1±0.4 kg; mean ± SEM) that was lower than the nonstimulated VMH-DBS animals (9.4±1.3 kg; p<0.05), suggestive of a DBS-associated increase in metabolic rate. These results in a porcine obesity model demonstrate the efficacy and behavioral safety of a low frequency VMH-DBS application as a potential clinical strategy for modulation of body weight.