Clin Lab
-
The critically ill polytrauma patient continues to be one of the most complex cases in the intensive care unit (ICU). The molecular damage is closely connected with the severe, specific pathophysiological imbalances, such as severe inflammation, infections, hypermetabolism, oxidative stress, and ultimately multiple organ dysfunction syndrome (MODS). ⋯ Furthermore, evaluation, monitoring, and therapy adaptation in this type of patient is closely related to the biochemical and molecular disorders.
-
The critically ill polytrauma patient, apart from the primary, traumatic injuries and the secondary, port-traumatic injuries, presents with a series of molecular disasters. Dysfunctions of the biochemical pathways and molecular damage add to the worsening of the clinical status of these patients, one of the most well-known molecular phenomena being oxidative stress (OS), responsible for an escalation of the inflammatory status, multiple infections, and multiple organ dysfunction syndrome (MODS). ⋯ One of the most aggressive redox mechanisms related to lipid molecules is known as lipid peroxidation (LPOX).
-
The multiple-traumatic critical patient presents a variety of pathophysiological, cellular, and molecular dysfunctions. One of the most important is represented by mitochondrial damage which afterwards is responsible for the augmentation and worsening of a series of pathologies that lead to the worsening of the clinical status of the patient. The severe inflammatory response, sepsis, and the redox imbalance are other pathologies that together with the multiple traumas are responsible for the mitochondrial dysfunctions. As an overview, we can say that both the mitochondrial damage as well as the clinical statuses of those patients are responsible for an increase in the chances of multiple organ dysfunction syndrome and death of critical patients with multiple trauma from the Intensive Care Units (ICU). In this paper we wish to summarize the microRNAs that can be used as biomarkers for evaluation and monitoring of the mitochondrial activity in critical patients with multiple traumas. ⋯ The critical polytrauma patient needs a specific evaluation and monitoring due to the complexity of the dysfunctions that appear at the cellular level. The use of microRNAs as biomarkers for the mitochondrial damage can be of real use for intensive care medicine. Nevertheless, more studies are required in order to determine a larger panel of microRNAs which can have an impact on mitochondrial damage.
-
A high percentage of critically ill polytrauma patients develop acute respiratory distress syndrome (ARDS), both because of the primary traumatic injuries and because of the secondary post-traumatic injuries. For adequate management of these patients, new complex evaluation and monitoring methods are needed, methods that could answer as many questions as possible regarding the pathophysiological changes associated with ARDS. Currently, a series of clinical and biochemical markers are being used which unfortunately do not respond to the needs of an intensive care clinician. Therefore, the changes of miRNAs have been intensely researched in the case of patients with ARDS. Moreover, using them as biomarkers for ARDS brings a series of answers regarding the pathophysiological changes associated to ARDS, making them biomarkers of the future in laboratory medicine. ⋯ Using miRNAs for the evaluation and monitoring of ARDS makes them a biomarker of the future, because of the complex answers they bring to questions related both to the main injury caused by ARDS and to the associated pathophysiology.
-
The complexity of the cases of critically ill polytrauma patients is given by both the primary, as well as the secondary, post-traumatic injuries. The severe injuries of organ systems, the major biochemical and physiological disequilibrium, and the molecular chaos lead to a high rate of morbidity and mortality in this type of patient. The 'gold goal' in the intensive therapy of such patients resides in the continuous evaluation and monitoring of their clinical status. Moreover, optimizing the therapy based on the expression of certain biomarkers with high specificity and sensitivity is extremely important because of the clinical course of the critically ill polytrauma patient. In this paper we wish to summarize the recent studies of biomarkers useful for the intensive care unit (ICU) physician. ⋯ The biomarkers existing today, with regard to the critically ill polytrauma patient, can bring a significant contribution to increasing the survival rate, by adapting the therapy according to their expressions. Nevertheless, the necessity remains to research new non-invasive diagnostic methods that present with higher specificity and selectivity.