Bmc Microbiol
-
The Pseudomonas aeruginosa major constitutive outer membrane porin protein F (OprF) has been shown to be a protective antigen and was previously used to activate an immunological response in a mouse model of lung pneumonia. The purpose of our study was to demonstrate the ability of mouse dendritic cells pulsed with purified or recombinant OprF to protect mice against P. aeruginosa infection and inflammation.Both native (n-OprF), isolated and purified from PAO1 bacterial strain, and recombinant (histidin-conjugated) OprF (His-OprF), obtained by cloning of the oprF gene into the pET28a expression vector, were used to stimulate dendritic cells in vitro before adoptive transfer into prospective recipient mice with P. aeruginosa pulmonary infection. ⋯ This study highlights the pivotal contribution of DCs to vaccine-induced protection against P. aeruginosa infection and associated inflammation.
-
The first step in invasive disease caused by the normally commensal bacteria Streptococcus pneumoniae, Staphylococcus aureus and Haemophilus influenzae is their colonization of the nasal passages. For any population to colonize a new habitat it is necessary for it to be able to compete with the existing organisms and evade predation. In the case of colonization of these species the competition is between strains of the same and different species of bacteria and the predation is mediated by the host's immune response. Here, we use a neonatal rat model to explore these elements of the ecology of nasal colonization by these occasionally invasive bacteria. ⋯ Nasal colonization is a dynamic process with turnover of new strains and new species. These results suggest that multiple strains of either H. influenzae or S. pneumoniae can coexist; in contrast, S. aureus strains require a host to have no other S. aureus present to colonize. Levels of colonization (and hence the possible risk of invasive disease) by H. influenzae are increased in hosts pre-colonized with either S. aureus or S. pneumoniae.
-
Cystic fibrosis (CF) is an inherited multi-system disorder characterised by chronic airway infection with pathogens such as Pseudomonas aeruginosa. Acquisition of P. aeruginosa by patients with CF is usually from the environment, but recent studies have demonstrated patient to patient transmission of certain epidemic strains, possibly via an airborne route. This study was designed to examine the survival of P. aeruginosa within artificially generated aerosols. ⋯ This would suggest that segregating individuals free of P. aeruginosa from those with chronic P. aeruginosa infection who are more likely to be infected with mucoid strains may help reduce the risk of cross-infection. Environmental factors also appear to influence bacterial survival. Warming and drying the air within clinical areas and avoidance of humidification devices may also be beneficial in reducing the risk of cross-infection.
-
Mouse virulence assessments of certain Mycobacterium tuberculosis mutants have revealed an immunopathology defect in which high tissue CFU counts are observed but the tissue pathology and lethality are reduced. M. tuberculosis mutants which grow and persist in the mouse lungs, but have attenuated disease progression, have the immunopathology (imp) phenotype. The antigenic properties of these strains may alter the progression of disease due to a reduction in host immune cell recruitment to the lungs resulting in disease attenuation and prolonged host survival. ⋯ Our observations suggest that the immunopathology phenotype is associated with the inability to trigger a strong early immune response, resulting in disease attenuation. While macrophages and T cells have been shown to be important in containing M. tuberculosis disease our study has shown that neutrophils may also play an important role in the containment of this organism.
-
Pseudomonas aeruginosa frequently colonizes and is responsible for severe ventilator-associated pneumonia in intubated patients. A quorum-sensing (QS) circuit, depending on the production of the two QS-signaling molecules (autoinducers, AIs) 3-oxo-C12-HSL and C4-HSL, regulates the production by P. aeruginosa of several virulence factors and is required for biofilm formation. Therefore QS-inhibition has been suggested as a new target for preventive and/or therapeutic strategies. However the precise role of QS during colonization and subsequent infections of intubated patients remains unclear. ⋯ Our findings demonstrate that autoinducers are produced during the colonization of intubated patients by P. aeruginosa. The microenvironment, in which P. aeruginosa grows, may select for bacteria with different capacities to produce autoinducers and certain QS-dependent phenotypes. QS-inhibition might therefore affect differently isolates growing inside the biofilm covering intubation devices and those resident in the lungs.