Viruses Basel
-
The ongoing Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) signals an urgent need for an expansion in treatment options. In this study, we investigated the anti-SARS-CoV-2 activities of 22 antiviral agents with known broad-spectrum antiviral activities against coronaviruses and/or other viruses. They were first evaluated in our primary screening in VeroE6 cells and then the most potent anti-SARS-CoV-2 antiviral agents were further evaluated using viral antigen expression, viral load reduction, and plaque reduction assays. ⋯ Betaferon (interferon-β1b) exhibited the most potent anti-SARS-CoV-2 activity in viral antigen expression, viral load reduction, and plaque reduction assays among the recombinant interferons. The lipogenesis modulators 25-hydroxycholesterol and AM580 exhibited EC50 at low micromolar levels and selectivity indices of >10.0. Combinational use of these host-based antiviral agents with virus-based antivirals to target different processes of the SARS-CoV-2 replication cycle should be evaluated in animal models and/or clinical trials.
-
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the betacoronavirus family, which causes COVID-19 disease. SARS-CoV-2 pathogenicity in humans leads to increased mortality rates due to alterations of significant pathways, including some resulting in exacerbated inflammatory responses linked to the "cytokine storm" and extensive lung pathology, as well as being linked to a number of comorbidities. Our current study compared five SARS-CoV-2 sequences from different geographical regions to those from SARS, MERS and two cold viruses, OC43 and 229E, to identify the presence of miR-like sequences. ⋯ This mechanism could have considerable significance in determining the symptom spectrum of future potential pandemics. KEGG pathway analysis revealed a number of critical pathways linked to the seven identified miRs that may provide insight into the interplay between the virus and comorbidities. Based on our reported findings, miRNAs may constitute potential and effective therapeutic approaches in COVID-19 and its pathological consequences.
-
The recent outbreak of the Coronavirus disease 2019 (COVID-19) has quickly spread worldwide since its discovery in Wuhan city, China in December 2019. A comprehensive strategy, including surveillance, diagnostics, research, clinical treatment, and development of vaccines, is urgently needed to win the battle against COVID-19. The past three unprecedented outbreaks of emerging human coronavirus infections at the beginning of the 21st century have highlighted the importance of readily available, accurate, and rapid diagnostic technologies to contain emerging and re-emerging pandemics. ⋯ Even though excellent techniques are available for the diagnosis of symptomatic patients with COVID-19 in well-equipped laboratories; critical gaps still remain in screening asymptomatic people who are in the incubation phase of the virus, as well as in the accurate determination of live viral shedding during convalescence to inform decisions for ending isolation. This review article aims to discuss the currently available laboratory methods and surveillance technologies available for the detection of COVID-19, their performance characteristics and highlight the gaps in current diagnostic capacity, and finally, propose potential solutions. We also summarize the specifications of the majority of the available commercial kits (PCR, EIA, and POC) for laboratory diagnosis of COVID-19.
-
This study compared the phylogeography of MERS-CoV between hospital outbreak-associated cases and sporadic cases in Saudi Arabia. We collected complete genome sequences from human samples in Saudi Arabia and data on the multiple risk factors of human MERS-CoV in Saudi Arabia reported from 2012 to 2018. By matching each sequence to human cases, we identified isolates as hospital outbreak-associated cases or sporadic cases. ⋯ Multiple introductions of different MERS-CoV strains occurred in three separate hospital outbreaks. MERS-CoV appears to be mutating in humans. The impact of mutations on viruses transmissibility in humans is unknown.
-
In early December 2019, the coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged in Wuhan, China. As of May 10th, 2020, a total of over 4 million COVID-19 cases and 280,000 deaths have been reported globally, reflecting the raised infectivity and severity of this virus. Amongst hospitalised COVID-19 patients, there is a high prevalence of established cardiovascular disease (CVD). ⋯ Preliminary findings from COVID-19 studies have shown the association of biomarkers of acute cardiac injury and coagulation with worse prognosis. While these biomarkers are recognised for CVD, there is emerging prospect that they may aid prognosis in COVID-19, especially in patients with cardiovascular comorbidities or risk factors that predispose to worse outcomes. Consequently, the aim of this review is to identify cardiovascular prognostic factors associated with morbidity and mortality in COVID-19 and to highlight considerations for incorporating laboratory testing of biomarkers of cardiovascular performance in COVID-19 to optimise outcomes.