Viruses Basel
-
The need for proven disease-specific treatments for the novel pandemic coronavirus SARS-CoV-2 necessitates a worldwide search for therapeutic options. Since the SARS-CoV-2 virus shares extensive homology with SARS-CoV and MERS-CoV, effective therapies for SARS-CoV and MERS-CoV may also have therapeutic potential for the current COVID-19 outbreak. To identify therapeutics that might be repositioned for treatment of the SARS-CoV-2 disease COVID-19, we strategically reviewed the literature to identify existing therapeutics with evidence of efficacy for the treatment of the three coronaviruses that cause severe respiratory illness (SARS-CoV, MERS-CoV, and SARS-CoV-2). ⋯ Tocilizumab and baricitinib appear to improve mortality by preventing a severe cytokine storm. Convalescent plasma and humanized monoclonal antibodies offer passive immunity and decreased recovery time. This review highlights potential therapeutic options that may be repurposed to treat COVID-19 and suggests opportunities for further research.
-
The recent outbreak of the Coronavirus disease 2019 (COVID-19) has quickly spread worldwide since its discovery in Wuhan city, China in December 2019. A comprehensive strategy, including surveillance, diagnostics, research, clinical treatment, and development of vaccines, is urgently needed to win the battle against COVID-19. The past three unprecedented outbreaks of emerging human coronavirus infections at the beginning of the 21st century have highlighted the importance of readily available, accurate, and rapid diagnostic technologies to contain emerging and re-emerging pandemics. ⋯ Even though excellent techniques are available for the diagnosis of symptomatic patients with COVID-19 in well-equipped laboratories; critical gaps still remain in screening asymptomatic people who are in the incubation phase of the virus, as well as in the accurate determination of live viral shedding during convalescence to inform decisions for ending isolation. This review article aims to discuss the currently available laboratory methods and surveillance technologies available for the detection of COVID-19, their performance characteristics and highlight the gaps in current diagnostic capacity, and finally, propose potential solutions. We also summarize the specifications of the majority of the available commercial kits (PCR, EIA, and POC) for laboratory diagnosis of COVID-19.
-
In early December 2019, the coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged in Wuhan, China. As of May 10th, 2020, a total of over 4 million COVID-19 cases and 280,000 deaths have been reported globally, reflecting the raised infectivity and severity of this virus. Amongst hospitalised COVID-19 patients, there is a high prevalence of established cardiovascular disease (CVD). ⋯ Preliminary findings from COVID-19 studies have shown the association of biomarkers of acute cardiac injury and coagulation with worse prognosis. While these biomarkers are recognised for CVD, there is emerging prospect that they may aid prognosis in COVID-19, especially in patients with cardiovascular comorbidities or risk factors that predispose to worse outcomes. Consequently, the aim of this review is to identify cardiovascular prognostic factors associated with morbidity and mortality in COVID-19 and to highlight considerations for incorporating laboratory testing of biomarkers of cardiovascular performance in COVID-19 to optimise outcomes.
-
In January 2020, Chinese health agencies reported an outbreak of a novel coronavirus-2 (CoV-2) which can lead to severe acute respiratory syndrome (SARS). The virus, which belongs to the coronavirus family (SARS-CoV-2), was named coronavirus disease 2019 (COVID-19) and declared a pandemic by the World Health Organization (WHO). Full-length genome sequences of SARS-CoV-2 showed 79.6% sequence identity to SARS-CoV, with 96% identity to a bat coronavirus at the whole-genome level. ⋯ EVs may provide targeted delivery of protease inhibitors, with fewer systemic side effects. More importantly, EVs are eligible for major aseptic processing and can be upscaled for mass production. Currently, the FDA is facilitating applications to treat COVID-19, which provides a very good chance to use EVs to contribute in this combat.
-
The outbreak of emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China has been brought to global attention and declared a pandemic by the World Health Organization (WHO) on March 11, 2020. Scientific advancements since the pandemic of severe acute respiratory syndrome (SARS) in 2002~2003 and Middle East respiratory syndrome (MERS) in 2012 have accelerated our understanding of the epidemiology and pathogenesis of SARS-CoV-2 and the development of therapeutics to treat viral infection. As no specific therapeutics and vaccines are available for disease control, the epidemic of COVID-19 is posing a great threat for global public health. To provide a comprehensive summary to public health authorities and potential readers worldwide, we detail the present understanding of COVID-19 and introduce the current state of development of measures in this review.