Resp Res
-
Multicenter Study
Decreased respiratory system compliance on the sixth day of mechanical ventilation is a predictor of death in patients with established acute lung injury.
Multiple studies have identified single variables or composite scores that help risk stratify patients at the time of acute lung injury (ALI) diagnosis. However, few studies have addressed the important question of how changes in pulmonary physiologic variables might predict mortality in patients during the subacute or chronic phases of ALI. We studied pulmonary physiologic variables, including respiratory system compliance, P/F ratio and oxygenation index, in a cohort of patients with ALI who survived more than 6 days of mechanical ventilation to see if changes in these variables were predictive of death and whether they are informative about the pathophysiology of subacute ALI. ⋯ A low respiratory system compliance on day 6 or a decrease in the respiratory system compliance between the 1st and 6th day of mechanical ventilation were associated with increased mortality in multivariate analysis of this cohort of patients with ALI. We suggest that decreased respiratory system compliance may identify a subset of patients who have persistent pulmonary edema, atelectasis or the fibroproliferative sequelae of ALI and thus are less likely to survive their hospitalization.
-
Salmeterol and fluticasone combination (SFC) has anti-inflammatory effects and improves clinical symptoms in patients with chronic obstructive pulmonary disease (COPD). However, the anti-inflammatory mechanism of SFC remains unclear. In this study, we investigated the inflammatory responses of COPD, as well as the relationship of the inflammatory factors with the levels of CD4+CD25+Foxp3+ regulatory T cells (Foxp3+Tregs) after SFC therapy. ⋯ SFC can reduce the levels of inflammatory factors and improve symptoms of COPD. The levels of inflammatory factors are associated with the variation of Foxp3+Tregs in COPD.
-
Whether exhaled NO helps to identify a specific phenotype of asthmatic patients remains debated. Our aims were to evaluate whether exhaled NO (FENO(0.05)) is independently associated (1) with underlying pathophysiological characteristics of asthma such as airway tone (bronchodilator response) and airway inflammation (inhaled corticosteroid [ICS]-dependant inflammation), and (2) with clinical phenotypes of asthma. We performed multivariate (exhaled NO as dependent variable) and k-means cluster analyses in a population of 169 asthmatic children (age ± SD: 10.5 ± 2.6 years) recruited in a monocenter cohort that was characterized in a cross-sectional design using 28 parameters describing potentially different asthma domains: atopy, environment (tobacco), control, exacerbations, treatment (inhaled corticosteroid and long-acting bronchodilator agonist), and lung function (airway architecture and tone). ⋯ Four clusters were further identified: cluster 1 (47%): boys, unexposed to tobacco, with well-controlled asthma; cluster 2 (26%): girls, unexposed to tobacco, with well-controlled asthma; cluster 3 (6%): girls or boys, unexposed to tobacco, with uncontrolled asthma associated with increased airway tone, and cluster 4 (21%): girls or boys, exposed to parental smoking, with small airway to lung size ratio and uncontrolled asthma. FENO(0.05) was not different in these four clusters. In conclusion, FENO(0.05) is independently linked to two pathophysiological characteristics of asthma (ICS-dependant inflammation and bronchomotor tone) but does not help to identify a clinically relevant phenotype of asthmatic children.
-
Pulmonary hypertension (PH) is characterized by arterial vascular remodelling and alteration in vascular reactivity. Since gap junctions are formed with proteins named connexins (Cx) and contribute to vasoreactivity, we investigated both expression and role of Cx in the pulmonary arterial vasoreactivity in two rat models of PH. ⋯ Altogether, Cx 37, 40 and 43 are differently expressed and involved in the vasoreactivity to various stimuli in IPA from different rat models. These data may help to understand alterations of pulmonary arterial reactivity observed in PH and to improve the development of innovative therapies according to PH aetiology.