Resp Res
-
Short PLUNC1 (SPLUNC1) is the founding member of a family of proteins (PLUNCS) expressed in the upper respiratory tract and oral cavity, which may function in host defence. It is one of the most highly expressed genes in the upper airways and the protein has been detected in sputum and nasal secretions. The biology of the PLUNC family is poorly understood but in keeping with the putative function of the protein as an immune defence protein, a number of RNA and protein studies have indicated that SPLUNC1 is increased in inflammatory/infectious conditions such as Cystic Fibrosis (CF), COPD and allergic rhinitis. ⋯ These studies show that SPLUNC1 is specifically and significantly increased in the small airways of lungs from patients with CF. They further suggest that it is the airway epithelium that is responsible for the increased levels of SPLUNC1 in CF and not inflammatory cells; this could be a defensive response to the infectious component of the disease.
-
Xenobiotic metabolizing enzyme gene polymorphisms predict response to lung volume reduction surgery.
In the National Emphysema Treatment Trial (NETT), marked variability in response to lung volume reduction surgery (LVRS) was observed. We sought to identify genetic differences which may explain some of this variability. ⋯ Genetic variants in GSTP1 and EPHX1, two genes encoding xenobiotic metabolizing enzymes, were predictive of response to LVRS. These polymorphisms may identify patients most likely to benefit from LVRS.
-
Bone marrow -derived cells (BMDCs) can either limit or contribute to the process of pulmonary vascular remodeling. Whether the difference in their effects depends on the mechanism of pulmonary hypertension (PH) remains unknown. ⋯ These results show that BMDCs limit pulmonary vascular remodeling induced by vascular injury but not by hypoxia.
-
Comparative Study
Human metapneumovirus induces more severe disease and stronger innate immune response in BALB/c mice as compared with respiratory syncytial virus.
Human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are members of the Pneumovirinae subfamily of Paramyxoviridae and can cause severe respiratory disease, especially in infants and young children. Some differences in the clinical course of these infections have been described, but there are few comparative data on pathogenesis in humans and animal models. In this study, HMPV and RSV were compared for replication, pathogenesis and immune induction in BALB/c mice infected with equivalent inocula of either virus. ⋯ This study shows important differences in HMPV and RSV pathogenesis and suggests that the pronounced innate immune response observed after HMPV infection might be instrumental in the severe pathology.
-
Comparative Study
Does respiratory health contribute to the effects of long-term air pollution exposure on cardiovascular mortality?
There is growing epidemiological evidence that short-term and long-term exposure to high levels of air pollution may increase cardiovascular morbidity and mortality. In addition, epidemiological studies have shown an association between air pollution exposure and respiratory health. To what extent the association between cardiovascular mortality and air pollution is driven by the impact of air pollution on respiratory health is unknown. The aim of this study was to investigate whether respiratory health at baseline contributes to the effects of long-term exposure to high levels of air pollution on cardiovascular mortality in a cohort of elderly women. ⋯ Respiratory health is a predictor for cardiovascular mortality. In women followed about 15 years after the baseline investigation at age 55 years long-term air pollution exposure and impaired respiratory health were independently associated with increased cardiovascular mortality.