Bmc Neurosci
-
We investigated the processing of task-irrelevant and unexpected novel sounds and its modulation by working-memory load in children aged 9-10 and in adults. Environmental sounds (novels) were embedded amongst frequently presented standard sounds in an auditory-visual distraction paradigm. Each sound was followed by a visual target. In two conditions, participants evaluated the position of a visual stimulus (0-back, low load) or compared the position of the current stimulus with the one two trials before (2-back, high load). Processing of novel sounds were measured with reaction times, hit rates and the auditory event-related brain potentials (ERPs) Mismatch Negativity (MMN), P3a, Reorienting Negativity (RON) and visual P3b. ⋯ Our results give new insights in the development of novelty processing as they (1) reveal that task-irrelevant novel sounds can result in contrary effects on the performance in a visual primary task in children and adults, (2) show a positive ERP deflection to novels rather than an MMN in children, and (3) reveal effects of auditory novels on visual target processing.
-
The structural arrangement of the γ-aminobutyric acid type A receptor (GABAAR) is known to be crucial for the maintenance of cerebral-dependent homeostatic mechanisms during the promotion of highly adaptive neurophysiological events of the permissive hibernating rodent, i.e the Syrian golden hamster. In this study, in vitro quantitative autoradiography and in situ hybridization were assessed in major hypothalamic nuclei. Reverse Transcription Reaction-Polymerase chain reaction (RT-PCR) tests were performed for specific GABAAR receptor subunit gene primers synthases of non-hibernating (NHIB) and hibernating (HIB) hamsters. Attempts were made to identify the type of αβγ subunit combinations operating during the switching ON/OFF of neuronal activities in some hypothalamic nuclei of hibernators. ⋯ We conclude that different αβγ subunits are operating as major elements either at the onset of torpor or during induction of the arousal state in the Syrian golden hamster. The identification of a brain regional distribution pattern of distinct GABAAR subunit combinations may prove to be very useful for highlighting GABAergic mechanisms functioning at least during the different physiological states of hibernators and this may have interesting therapeutic bearings on neurological sleeping disorders.
-
Anesthetics dose-dependently shift electroencephalographic (EEG) activity towards high-amplitude, slow rhythms, indicative of a synchronization of neuronal activity in thalamocortical networks. Additionally, they uncouple brain areas in higher (gamma) frequency ranges possibly underlying conscious perception. It is currently thought that both effects may impair brain function by impeding proper information exchange between cortical areas. But what happens at the local network level? Local networks with strong excitatory interconnections may be more resilient towards global changes in brain rhythms, but depend heavily on locally projecting, inhibitory interneurons. As anesthetics bias cortical networks towards inhibition, we hypothesized that they may cause excessive synchrony and compromise information processing already on a small spatial scale. Using a recently introduced measure of signal independence, cross-approximate entropy (XApEn), we investigated to what degree anesthetics synchronized local cortical network activity. We recorded local field potentials (LFP) from the somatosensory cortex of three rats chronically implanted with multielectrode arrays and compared activity patterns under control (awake state) with those at increasing concentrations of isoflurane, enflurane and halothane. ⋯ The results suggest that anesthetics strongly diminish the independence of operation of local cortical neuronal populations, and that the quantification of these effects in terms of XApEn has a similar discriminatory power as changes of spontaneous action potential rates. Thus, XApEn of field potentials recorded from local cortical networks provides valuable information on the anesthetic state of the brain.
-
Hypertonic saline and mannitol are commonly used in the treatment of cerebral edema and elevated intracranial pressure (ICP) at present. In this connection, 10% hypertonic saline (HS) alleviates cerebral edema more effectively than the equal volume of 20% mannitol. However, the exact underlying mechanism for this remains obscure. This study aimed to explore the possible mechanism whereby 10% hypertonic saline can ameliorate cerebral edema more effectively than mannitol. ⋯ We conclude that 10% HS is more effective in alleviating cerebral edema than the equal volume of 20% mannitol. This is because 10% HS contributes to establish a higher osmotic gradient across BBB and, furthermore, the progressive accumulation of mannitol in the ischemic brain tissue counteracts its therapeutic efficacy on cerebral edema.
-
Apolipoprotein-E (apoE) plays important roles in neurobiology and the apoE4 isoform increases risk for Alzheimer's disease (AD). ApoE3 and apoE2 are known to form disulphide-linked dimers in plasma and cerebrospinal fluid whereas apoE4 cannot form these dimers as it lacks a cysteine residue. Previous in vitro research indicates dimerisation of apoE3 has a significant impact on its functions related to cholesterol homeostasis and amyloid-beta peptide degradation. The possible occurrence of apoE dimers in cortical tissues has not been examined and was therefore assessed. Human frontal cortex and hippocampus from control and AD post-mortem samples were homogenised and analysed for apoE by western blotting under both reducing and non-reducing conditions. ⋯ The identification of disulphide-linked apoE dimers in human cortical and hippocampal tissues represents a distinct structural difference between the apoE3 and apoE4 isoforms that may have functional consequences.