J Neuroinflamm
-
Chronic neuropathic pain is a neuro-immune disorder, characterised by allodynia, hyperalgesia and spontaneous pain, as well as debilitating affective-motivational disturbances (e.g., reduced social interactions, sleep-wake cycle disruption, anhedonia, and depression). The role of the immune system in altered sensation following nerve injury is well documented. However, its role in the development of affective-motivational disturbances remains largely unknown. Here, we aimed to characterise changes in the immune response at peripheral and spinal sites in a rat model of neuropathic pain and disability. ⋯ This study has defined individual differences in the immune response at peripheral and spinal sites following CCI in rats. These changes correlated with the degree of disability. Our data suggest that individual immune signatures play a significant role in the different behavioural trajectories following nerve injury, and in some cases may lead to persistent affective-motivational disturbances.
-
T cells have been implicated in neuropathic pain that is caused by peripheral nerve injury. Immunogenic myelin basic protein (MBP) peptides have been shown to initiate mechanical allodynia in a T cell-dependent manner. Antagonistic altered peptide ligands (APLs) are peptides with substitutions in amino acid residues at T cell receptor contact sites and can inhibit T cell function and modulate inflammatory responses. In the present study, we studied the effects of immunization with MBP-derived APL on pain behavior and neuroinflammation in an animal model of peripheral nerve injury. ⋯ These results suggest that immune deviation by active immunization with a non-encephalitogenic MBP-derived APL mediates an analgesic effect in animals with peripheral nerve injury. Thus, T cell immunomodulation warrants further investigation as a possible therapeutic strategy for the treatment of peripheral neuropathic pain.
-
Neuroinflammation mediated by overactivated microglia plays a key role in many neurodegenerative diseases, including Alzheimer's disease (AD). In this study, we investigated for the first time the anti-neuroinflammatory effects and possible mechanisms of SCM-198 (an alkaloid extracted from Herbaleonuri), which was previously found highly cardioprotective, both in vitro and in vivo. ⋯ Our findings are the first to report that SCM-198 has considerable anti-neuroinflammatory effects on inhibiting microglial overactivation and might become a new potential drug candidate for AD therapy in the future.
-
Genetic and environmental factors are critical elements influencing the etiology of major depression. It is now accepted that neuroinflammatory processes play a major role in neuropsychological disorders. Neuroinflammation results from the dysregulation of the synthesis and/or release of pro- and anti-inflammatory cytokines with central or peripheral origin after various insults. Systemic bacterial lipopolysaccharide (LPS) challenge is commonly used to study inflammation-induced depressive-like behaviors in rodents. In the present study, we investigated immune-to-brain communication in mice by examining the effects of peripheral LPS injection on neuroinflammation encompassing cytokine and chemokine production, microglia and central nervous system (CNS)-associated phagocyte activation, immune cell infiltration and serotonergic neuronal function. ⋯ Together, we provide a detailed characterization of the molecular and cellular players involved in the establishment of neuroinflammation after systemic injection of LPS. This highlights the importance of the CCL2/CCR2 signaling and suggests a possible link with depressive disorders.
-
Astrogliosis is a common phenomenon after spinal cord injury (SCI). Although this process exerts positive effects on axonal regeneration, excessive astrogliosis imparts negative effects on neuronal repair and recovery. Epidermal growth factor receptor (EGFR) pathway is critical to the regulation of reactive astrogliosis, and therefore is a potential target of therapeutics to better control the response. In this report, we aim to investigate whether blocking EGFR signaling using an EGFR tyrosine kinase specific inhibitor can attenuate reactive astrogliosis and promote functional recovery after a traumatic SCI. ⋯ The specific EGFR inhibitor PD168393 can ameliorate excessive reactive astrogliosis and facilitate a more favorable environment for axonal regeneration after SCI. As such, EGFR inhibitor may be a promising therapeutic intervention in CNS injury.