Mol Pain
-
N-type Ca2+ channels (Ca(v)2.2) play an important role in the transmission of pain signals to the central nervous system. ω-Conotoxin (CTx)-MVIIA, also called ziconotide (Prialt®), effectively alleviates pain, without causing addiction, by blocking the pores of these channels. Unfortunately, CTx-MVIIA has a narrow therapeutic window and produces serious side effects due to the poor reversibility of its binding to the channel. It would thus be desirable to identify new analgesic blockers with binding characteristics that lead to fewer adverse side effects. ⋯ The analgesic potency of CTx-FVIA and its greater reversibility could represent advantages over CTx-MVIIA for the treatment of refractory pain and contribute to the design of an analgesic with high potency and low side effects.
-
Investigations of nucleotide signaling in nociception to date have focused on actions of adenosine triphosphate (ATP). Both ATP-gated ion channels (P2X receptors) and G protein-coupled (P2Y) receptors contribute to nociceptive signaling in peripheral sensory neurons. In addition, several studies have implicated the Gq-coupled adenosine diphosphate (ADP) receptor P2Y1 in sensory transduction. In this study, we examined the expression and function of P2Y1 and the Gi-coupled receptors P2Y12, P2Y13 and P2Y14 in sensory neurons to determine their contribution to nociception. ⋯ We report that Gi-coupled P2Y receptors are widely expressed in peripheral sensory neurons. Agonists for these receptors inhibit nociceptive signaling in isolated neurons and reduce behavioral hyperalgesia in vivo. Anti-nociceptive actions of these receptors appear to be antagonized by the Gq-coupled ADP receptor, P2Y1, which is required for the full expression of inflammatory hyperalgesia. We propose that nociceptor sensitivity is modulated by the integration of nucleotide signaling through Gq- and Gi-coupled P2Y receptors, and this balance is altered in response to inflammatory injury. Taken together, our data suggest that Gi-coupled P2Y receptors are broadly expressed in nociceptors, inhibit nociceptive signaling in vivo, and represent potential targets for the development of novel analgesic drugs.
-
Previous studies have shown that the TRPV1 ion channel plays a critical role in the development of heat hyperalgesia after inflammation, as inflamed TRPV1-/- mice develop mechanical allodynia but fail to develop thermal hyperalgesia. In order to further investigate the role of TRPV1, we have used an ex vivo skin/nerve/DRG preparation to examine the effects of CFA-induced-inflammation on the response properties of TRPV1-positive and TRPV1-negative cutaneous nociceptors. ⋯ Results obtained here suggest that increased heat sensitivity in TRPV1-negative CPM fibers alone following inflammation is insufficient for the induction of heat hyperalgesia. On the other hand, TRPV1-positive CH fibers appear to play an essential role in this process that may include both afferent and efferent functions.
-
Neuropathic pain is an intractable clinical problem. Intrathecal ketamine, a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist, is reported to be useful for treating neuropathic pain in clinic by inhibiting the activity of spinal neurons. Nevertheless, emerging studies have disclosed that spinal astrocytes played a critical role in the initiation and maintenance of neuropathic pain. However, the present clinical therapeutics is still just concerning about neuronal participation. Therefore, the present study is to validate the coadministration effects of a neuronal noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine and astrocytic cytotoxin L-α-aminoadipate (LAA) on spinal nerve ligation (SNL)-induced neuropathic pain. ⋯ These results suggest that combining NMDAR antagonist ketamine with an astrocytic inhibitor or cytotoxin, which is suitable for clinical use once synthesized, might be a potential strategy for clinical management of neuropathic pain.
-
Recent research has proposed a pathway in which sensory neurons expressing the capsaicin activated ion channel TRPV1 are required for histamine-induced itch and subsequent scratching behavior. We examined histamine-induced itch in the African naked mole-rat (Heterocephalus glaber) and found that although naked mole-rats display innate scratching behavior, histamine was unable to evoke increased scratching as is observed in most mouse strains. Using calcium imaging, we examined the histamine sensitivity of naked mole-rat dorsal root ganglia (DRG) neurons and identified a population of small diameter neurons activated by histamine, the majority of which are also capsaicin-sensitive. ⋯ Our data therefore support a model in which TRPV1-expressing sensory neurons are important for histamine-induced itch. In addition, we demonstrate a requirement for active, SP-induced post-synaptic drive to enable histamine sensitive afferents to drive itch-related behavior in the naked mole-rat. These results illustrate that it is altered dorsal horn connectivity of nociceptors that underlies the lack of itch and pain-related behavior in the naked mole-rat.