Mol Pain
-
The epidermis is innervated by fine nerve endings that are important in mediating nociceptive stimuli. However, their precise role in neuropathic pain is still controversial. Here, we have studied the role of epidermal peptidergic nociceptive fibers that are located adjacent to injured fibers in a rat model of neuropathic pain. ⋯ The results show an increased density of uninjured CGRP-IR epidermal fibers on the lateral and medial side after a SNI procedure at 5 and 10 weeks. Furthermore, although in control animals the density of epidermal CGRP-IR fibers in the footpads was lower compared to the surrounding skin of the foot, 10 weeks after the SNI procedure, the initially denervated footpads displayed a hyper-innervation. These data support the idea that uninjured fibers may play a considerable role in development and maintenance of neuropathic pain and that it is important to take larger biopsies to test the relationship between innervation of injured and uninjured nerve areas.
-
The age-dependency of opioid analgesia and tolerance has been noticed in both clinical observation and laboratory studies. Evidence shows that many molecular and cellular events that play essential roles in opioid analgesia and tolerance are actually age-dependent. ⋯ Other signaling systems that are critical to opioid tolerance development, such as N-methyl-D-aspartic acid (NMDA) receptors, also undergo age-related changes. It is plausible that the age-dependent expression and functions of molecules within and related to the opioid signaling pathways, as well as age-dependent cellular activity such as agonist-induced opioid receptor internalization and desensitization, eventually lead to significant age-dependent changes in opioid analgesia and tolerance development.
-
Provoked vestibulodynia (PVD) is a pain disorder localized in the vestibular mucosa. It is the most common cause of dyspareunia among young women and it is associated with general pain hypersensitivity and other chronic pain conditions. Polymorphism in the guanosine triphosphate cyclohydrolase (GCH1) gene has been found to influence general pain sensitivity and the risk of developing a longstanding pain condition. The aim of this study was to investigate GCH1-polymorphism in women with PVD and healthy controls, in correlation to pain sensitivity. ⋯ The results of this study gave no support to the hypothesis that polymorphism in the GCH1-gene contributes to the etiology of PVD. However, among patients currently receiving treatment an interaction effect of the defined SNP combination and use of hormonal contraceptives on pain sensitivity was found. This finding offers a possible explanation to the clinically known fact that some PVD patients improve after cessation of hormonal contraceptives, indicating that PVD patients carrying the defined SNP combination of GCH1 would benefit from this intervention.
-
Comparative Study
Comparison of central versus peripheral delivery of pregabalin in neuropathic pain states.
Although pregabalin therapy is beneficial for neuropathic pain (NeP) by targeting the CaVα2δ-1 subunit, its site of action is uncertain. Direct targeting of the central nervous system may be beneficial for the avoidance of systemic side effects. ⋯ Either intranasal or intrathecal pregabalin relieves neuropathic pain behaviours, perhaps due to pregabalin's effect upon anterograde CaVα2δ-1 protein trafficking from the DRG to the dorsal horn. Intranasal delivery of agents such as pregabalin may be an attractive alternative to systemic therapy for management of neuropathic pain states.
-
Migraine headache is one of the most common neurological disorders, but the pathophysiology contributing to migraine is poorly understood. Intracranial interleukin-6 (IL-6) levels have been shown to be elevated during migraine attacks, suggesting that this cytokine may facilitate pain signaling from the meninges and contribute to the development of headache. ⋯ Our results indicate that IL-6 enhances the excitability of dural afferents likely via ERK-mediated modulation of Nav1.7 and these responses contribute to migraine-related pain behavior in vivo. These data provide a cellular mechanism by which IL-6 in the meninges causes sensitization of dural afferents therefore contributing to the pathogenesis of migraine headache.