Mol Pain
-
Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. ⋯ The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats.
-
The G(q/11)-protein signaling mechanism is essential throughout the nervous system, but little is known about the contribution of the individual G-protein GPCR signaling branches towards nociceptor activation and their specific role on nociceptor sensitization. We aimed to unravel the contribution of the G(q/11)-signaling pathway towards nociceptor activation via a variety of classical inflammatory mediators signalling via different G-protein GPCRs and investigated the specific contribution of the individual G(q) and G(11) G-Proteins in nociceptors. ⋯ Our results demonstrate that the G(q/11) signaling branch plays a primary role in nociceptor sensitization upon stimulation with classical GPCR ligands, contributing primarily towards the development of mechanically allodynia. Moreover, the deletion of the individual G-proteins led to the finding that the G(q)-protein dominates the signalling machinery of the G(q/11) family of G-proteins in nociceptive neurons.
-
Opioid receptors regulate a diverse array of physiological functions. Mu opioid receptor agonists are well-known analgesics for treating acute pain. In contrast, animal models suggest that chronic pain is more effectively relieved by delta opioid receptor agonists. A number of studies have shown that chronic pain results in increased function of delta opioid receptors. This is proposed to result from enhanced trafficking of the delta opioid receptor to the cell membrane induced by persistent tissue injury. However, recent studies have questioned this mechanism, which has resulted in some uncertainty as to whether delta opioid receptors are indeed upregulated in chronic pain states. To clarify this question, we have examined the effect of chronic inflammatory pain over time using both an ex vivo measure of delta function: receptor-Ca2+ channel coupling, and an in vivo measure; the relief of chronic pain by a delta opioid receptor agonist. In addition, as beta-arrestin 2 can regulate delta opioid receptor trafficking and signaling, we have further examined whether deleting this scaffolding and signal transduction molecule alters delta opioid receptor function. ⋯ Our results indicate that there is an upregulation of delta opioid receptor function following chronic pain. This gain of function is reflected in the increased efficacy of a delta agonist in both behavioral and electrophysiological measures. Overall, this work confirms that delta opioid receptors can be enhanced following tissue injury associated with chronic pain.
-
Inhibitory interneurons in the superficial dorsal horn play important roles in modulating sensory transmission, and these roles are thought to be performed by distinct functional populations. We have identified 4 non-overlapping classes among the inhibitory interneurons in the rat, defined by the presence of galanin, neuropeptide Y, neuronal nitric oxide synthase (nNOS) and parvalbumin. The somatostatin receptor sst2A is expressed by ~50% of the inhibitory interneurons in this region, and is particularly associated with nNOS- and galanin-expressing cells. The main aim of the present study was to test whether a genetically-defined population of inhibitory interneurons, those expressing green fluorescent protein (GFP) in the PrP-GFP mouse, belonged to one or more of the neurochemical classes identified in the rat. ⋯ These findings support the view that neurochemistry provides a valuable way of classifying inhibitory interneurons in the superficial laminae. Together with previous evidence that the PrP-GFP cells form a relatively homogeneous population in terms of their physiological properties, they suggest that these neurons have specific roles in processing sensory information in the dorsal horn.
-
Pain in masticatory muscles is among the most prominent symptoms of temperomandibular disorders (TMDs) that have diverse and complex etiology. A common complaint of TMD is that unilateral pain of craniofacial muscle can cause a widespread of bilateral pain sensation, although the underlying mechanism remains unknown. To investigate whether unilateral inflammation of masseter muscle can cause a bilateral allodynia, we generated masseter muscle inflammation induced by unilateral injection of complete Freund's adjuvant (CFA) in rats, and measured the bilateral head withdrawal threshold at different time points using a von Frey anesthesiometer. ⋯ Interestingly, central injection of TRPV1 antagonist 5-iodoresiniferatoxin into the hippocampus significantly attenuated the head withdrawal response of both CFA injected and non-CFA injected contralateral masseter muscle. Our findings show that unilateral inflammation of masseter muscle is capable of inducing bilateral allodynia in rats. Upregulation of TRPV1 at the TRG level is due to nociception caused by inflammation, whereas contralateral nocifensive behavior in masticatory muscle nociception is likely mediated by central TRPV1, pointing to the involvement of altered information processing in higher centers.