Mol Pain
-
Propofol, an intravenous anesthetic, has been shown to offer superior analgesic effect clinically. Whether propofol has preventive analgesic property remains unexplored. The present study investigated the antinociceptive effect of propofol and underlying molecular and cellular mechanisms via pre-emptive administration in a formalin-induced inflammatory pain model in rats. ⋯ Preconditioning treatment with 3 µM and 10 µM of propofol inhibited Ca2+ influx mediated through NMDA receptors in SH-SY5Y cells. Propofol also reduced the neuronal expression of c-Fos and p-ERK induced by formalin. This study shows that pre-emptive administration of propofol produces preventive analgesic effects on inflammatory pain through regulating neuronal GluN2B-containing NMDA receptor and ERK1/2 pathway in the spinal dorsal horn.
-
A diverse array of G protein-coupled receptors (GPCRs) is implicated in the modulation of nociception. The efficacy and potency of several GPCR agonists change as a consequence of peripheral inflammatory injury. Whether these changes reflect alterations in expression of the G proteins themselves is not known. ⋯ Two weeks after CFA, the levels for all Gα subunits trended higher in the RVM. These data indicate that peripheral inflammatory injury induces subtle changes in the abundance of Gα subunits that is specific with respect to class, subcellular compartment, tissue, and time after injury. These changes have the potential to alter the balance of the different subcellular signaling pathways through which GPCR agonists act to modulate nociception.
-
Hyperbaric oxygen therapy is increasingly used in adjuvant therapies to treat neuropathic pain. However, the specific targets of hyperbaric oxygen treatment in neuropathic pain remain unclear. Recently, we found that hyperbaric oxygen therapy produces an antinociceptive response via the kindlin-1/wnt-10a signaling pathway in a chronic pain injury model in rats. ⋯ Our findings demonstrate that kindlin-1 is a key protein in the action of hyperbaric oxygen therapy in the treatment of neuropathic pain. Indeed, interference with kindlin-1 may be a drug target for reducing the neuroinflammatory responses of the glial population in neuropathic pain.
-
It has been demonstrated that upregulation of CXCL12 and CXCR4 in spinal cord involves in the pathogenesis of neuropathic, inflammatory, and cancer pain. However, whether CXCL12/CXCR4 signaling contributes to postsurgical pain remains unknown. The aim of the present study is to investigate the role of CXCL12/CXCR4 signaling in the genesis of postsurgical pain and the underlying mechanism. ⋯ Our results suggests that plantar incision-induced activation of NF-κB signaling may mediate upregulation of CXCL12 in spinal cord, and CXCL12/CXCR4 signaling via extracellular signal-regulated kinase activation contributes to the genesis of postsurgical pain.
-
Background Lumbar disc herniation is a major cause of radicular pain, but the underlying mechanisms remain largely unknown. Spinal activation of src-family kinases are involved in the development of chronic pain from nerve injury, inflammation, and cancer. In the present study, the role of src-family kinases activation in lumbar disc herniation-induced radicular pain was investigated. ⋯ Furthermore, we found that the expression of ionized calcium-binding adapter molecule 1 (marker of microglia), tumor necrosis factor-α, interleukin 1 -β in spinal dorsal horn was increased in rats with nucleus pulposus. Therapeutic effect of PP2 may be related to its capacity in reducing the expression of these factors. Conclusions These findings suggested that central sensitization was involved in radicular pain from lumbar disc herniation; src-family kinases-mediated inflammatory response may be responsible for central sensitization and chronic pain after lumbar disc herniation.