Mol Pain
-
Cervical radiculopathic pain is a very common symptom that may occur with cervical spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain and is inadequately treated with current therapies. However, the precise mechanisms underlying cervical radiculopathic pain-associated mechanical allodynia have remained elusive. ⋯ This increased Ih was supported by the enhanced expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3 in large dorsal root ganglion neurons. Blockade of Ih with selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated with cervical radiculopathic pain. This study sheds new light on the functional plasticity of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel mechanism that could underlie the mechanical allodynia associated with cervical radiculopathy.
-
Pain vulnerability and DNA methyltransferase 3a involved in the affective dimension of chronic pain.
Chronic pain with comorbid emotional disorders is a prevalent neurological disease in patients under various pathological conditions, yet patients show considerable difference in their vulnerability to developing chronic pain. Understanding the neurobiological basis underlying this pain vulnerability is essential to develop targeted therapies of higher efficiency in pain treatment of precision medicine. However, this pain vulnerability has not been addressed in preclinical pain research in animals to date. ⋯ In addition, social stress also revealed significant individual variance in anxiety behavior in mice. These findings suggest that individual pain vulnerability may be inherent mostly in the emotional/affective component of chronic pain and remain consistent in different aspects of negative emotion, in which adaptive changes in the function of DNA methyltransferase 3a for DNA methylation in central amygdala may play an important role. This may open a new avenue of basic research into the neurobiological mechanisms underlying pain vulnerability.
-
Acute postoperative pain is induced by most incisional surgeries and usually resolves with wound repair. However, many patients experience moderate to severe pain despite receiving currently available postoperative pain relief. Accumulating evidence suggests that inflammatory cells, neutrophils, and macrophages infiltrating the wound site contribute to the acute inflammation, pain, and subsequent wound repair. Colchicine is commonly used to relieve pain in gout by inhibiting the infiltration of granulocytes and other motile cells. In this study, we examined the effects of colchicine on acute postoperative pain and wound repair by correlating the infiltration of neutrophils and macrophages in a mouse model of postoperative pain induced by plantar incision. Furthermore, these effects of colchicine were compared with clodronate liposomes, which selectively deplete circulating macrophages. ⋯ These results suggest that colchicine can alleviate acute postoperative pain and also enhance the risk of delayed wound repair, which are associated with the suppression of neutrophil and subsequent proinflammatory M1 macrophage infiltration around the incision site, while the involvement of macrophages may be limited.
-
Background Self-injurious behaviors (SIBs) are devastating traits in autism spectrum disorder (ASD). Although deficits in pain sensation might be one of the contributing factors underlying the development of SIBs, the mechanisms have yet to be addressed. Recently, the Shank2 synaptic protein has been considered to be a key component in ASD, and mutations of SHANK2 gene induce the dysfunction of N-methyl-D-aspartate (NMDA) receptors, suggesting a link between Shank2 and NMDA receptors in ASD. ⋯ Moreover, it was found that the NMDA-induced increase in p-ERK was primarily colocalized with Shank2 proteins in the spinal cord dorsal horn. Conclusion Shank2 protein is involved in spinal NMDA receptor-mediated pain, and mutations of Shank2 may suppress NMDA-ERK signaling in spinal pain transmission. This study provides new clues into the mechanisms underlying pain deficits associated with SIB and deserves further study in patients with ASD.
-
Recent data suggest that corneal somatosensory dysfunction may be the underlying cause of severe dry eye symptoms in the absence of ocular surface pathology seen in a subset of patients diagnosed with “dry eye syndrome.” This subset of patients tends to demonstrate a unique constellation of symptoms that are persistent, more severe, and generally respond poorly to current dry eye therapies targeting inadequate or dysfunctional tears. A growing body of literature suggests that symptoms in these patients may be better characterized as neuropathic ocular pain rather than dry eye. In these patients, dry eye symptoms are often associated with numerous comorbid pain conditions and evidence of central pain processing abnormalities, where eye pain is just one of multiple overlapping peripheral manifestations. In this review, we discuss the concept and potential mechanisms of chronic overlapping pain conditions as well as evidence for considering neuropathic ocular pain as one of these overlapping pain conditions.