Mol Pain
-
It is documented that sensory transmission, including pain, is subject to endogenous inhibitory and facilitatory modulation at the dorsal horn of the spinal cord. Descending facilitation has received a lot of attention, due to its potentially important roles in chronic pain. ⋯ It also provides the neuronal basis to link emotional disorders such as anxiety, depression, and loss of hope to somatosensory pain and sufferings. In this review, I will review a brief history of the discovery of brainstem-spinal descending facilitation and explore new information and hypothesis for descending facilitation in chronic pain.
-
Chronic pain is a significant problem worldwide and is the most common disability in the United States. It is well known that the immune system plays a critical role in the development and maintenance of many chronic pain conditions. ⋯ The purpose of this review is to briefly discuss the immune system involvement in pain and to outline how it relates to rheumatoid arthritis, osteoarthritis, fibromyalgia, complex regional pain syndrome, multiple sclerosis, and diabetic neuropathy. The immune system plays a major role in many debilitating chronic pain conditions and we believe that animal models of disease and their treatments should be more directly focused on these interactions.
-
Tight whole-cell patch clamp was performed in 191 DiI (1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate) retrogradely labeled rat sensory afferents from skin shoulders ( n = 93) and biceps femoris muscles ( n = 98). 5-HT-gated inward currents were evoked with 50-µM serotonin (5-HT; 5-hydroxytryptamine), and their frequency and current densities were compared between skin and skeletal muscle sensory afferents. To evaluate if 5-HT-gated inward currents coexist with other ligand-gated currents, the skin and skeletal muscle sensory afferents were also sequentially exposed to external solution at pH 6.8, ATP (50 µM), and capsaicin (1 µM). 5-HT evoked inward currents in 72% (67 of 93) of hairy skin sensory afferents and in only 24% (24 of 98) of skeletal muscle sensory afferents, and this difference was statistically significant ( p < 0.0000, chi-square test). The current densities obtained in hairy skin and skeletal muscle sensory afferents were not significantly different. ⋯ These results indicate that 5-HT-gated inward currents are three times more frequently evoked in small- to medium-sized sensory afferents (25-40 µm) innervating the hairy skin than on those innervating the skeletal muscle. When cells were gathered in two clusters, the difference was four times larger in the small-sized cluster (25-32 µm) and two times larger in the medium-sized cluster (33-40 µm). The results can be explained if the superficial somatic (cutaneous) nociceptive system is more exposed than the deep somatic nociceptive system (musculoskeletal) to physical and chemical stimuli inducing 5-HT-mediated inflammatory pain.
-
Transient Receptor Potential Vanilloid 1 (TRPV1) and Transient Receptor Potential Ankyrin 1 (TRPA1) expressed mainly by primary sensory neurons function as major nociceptive integrators. They are also present on the rat endometrium in an oestrogen-regulated manner. TRPV1 is upregulated in peritoneal and ovarian endometriosis patients, but there is no information about TRPA1 and their pathophysiological significances. ⋯ Epithelial TRPA1 and stromal TRPV1 immunopositivity also positively correlated with dyschezia severity. We provide the first evidence for the presence of non-neuronal TRPA1 receptor in the healthy human endometrium and confirm the expression of TRPV1 channels. Their upregulations in rectosigmoid deep infiltrating endometriosis lesions and correlations with pain intensity suggest potential roles in pathophysiological mechanisms of the disease.
-
Cdk5 is a key neuronal kinase necessary for proper brain development, which has recently been implicated in modulating nociception. Conditional deletion of Cdk5 in pain-sensing neurons attenuates pain responses to heat in both the periphery and orofacial regions. Cdk5 activity is regulated by binding to the activators p35 and p39, both of which possess a cyclin box. ⋯ Here, we report that the knockout of p39 in mice did not affect orofacial and peripheral nociception. The lack of any algesic response to nociceptive stimuli in the p39 knockout mice contrasts with the hypoalgesic effects that result from the deletion of p35. Our data demonstrate different and nonoverlapping roles of Cdk5 activators in the regulation of orofacial as well as peripheral nociception with a crucial role for Cdk5/p35 in pain signaling.