Mol Pain
-
Cancer-induced bone pain is one of the most severe types of pathological pain, which often occurs in patients with advanced prostate, breast, and lung cancer. It is of great significance to improve the therapies of cancer-induced bone pain due to the opioids' side effects including addiction, sedation, pruritus, and vomiting. Sinomenine, a traditional Chinese medicine, showed obvious analgesic effects on a rat model of chronic inflammatory pain, but has never been proven to treat cancer-induced bone pain. ⋯ Chronic intraperitoneal treatment with sinomenine markedly suppressed the activation of microglia and effectively inhibited the expression of JAK2/STAT3 and CAMKII/CREB signaling pathways. We are the first to reveal that up-regulation of microglial JAK2/STAT3 pathway are involved in the development and maintenance of cancer-induced bone pain. Moreover, our investigation provides the first evidence that sinomenine alleviates cancer-induced bone pain by inhibiting microglial JAK2/STAT3 and neuronal CAMKII/CREB cascades.
-
Meta Analysis
The effectiveness of therapeutic strategies for patients with radiculopathy: A network meta-analysis.
Objectives The aim of this network meta-analysis is to assess the effectiveness of therapeutic strategies for patients with radiculopathy, including physical, medical, surgical, and other therapies. Methods We electronically searched electronic databases including PubMed and Embase for randomized controlled trials. The response rate and visual analog scale of pain change were considered as primary outcomes. ⋯ According to the SUCRA results, corticosteroid, collar, and physiotherapy ranked the highest concerning response rate (SUCRA = 0.656, 0.652, and 0.610, respectively). Surgery, traction, and corticosteroid were superior to others in pain change (SUCRA = 0.866, 0.748, and 0.589, respectively). Conclusion According to the network meta-analysis result, we recommended surgery as the optimal treatment for radiculopathy patients; traction and corticosteroids were also recommended for their beneficial interventions.
-
Surgical incision-induced nociception contributes to the occurrence of postoperative cognitive dysfunction. However, the exact mechanisms involved remain unclear. Brain-derived neurotrophic factor (BDNF) has been demonstrated to improve fear learning ability. ⋯ ANA-12, a selective TrkB antagonist, abolished the improvement in fear learning and the activation of the BDNF signaling pathway induced by eutectic mixture of local anesthetics. Based on these results, surgical incision-induced postoperative pain, which was attenuated by postoperative analgesia, caused learning impairment in mice partially by inhibiting the BDNF signaling pathway. These findings provide insights into the mechanism underlying surgical incision-induced postoperative cognitive function impairment.
-
Voltage-gated sodium channel Nav1.7 is a threshold channel in peripheral dorsal root ganglion (DRG), trigeminal ganglion, and sympathetic ganglion neurons. Gain-of-function mutations in Nav1.7 have been shown to increase excitability in DRG neurons and have been linked to rare Mendelian and more common pain disorders. Discovery of Nav1.7 variants in patients with pain disorders may expand the spectrum of painful peripheral neuropathies associated with a well-defined molecular target, thereby providing a basis for more targeted approaches for treatment. ⋯ The patient responded to treatment with CBZ. Although CBZ did not depolarize activation of the mutant channel, it enhanced use-dependent inhibition. Our results demonstrate the presence of a novel gain-of-function variant of Nav1.7 in a patient with adult-onset painful peripheral neuropathy and the responsiveness of that patient to treatment with CBZ, which is likely due to the classical mechanism of use-dependent inhibition.
-
Neuropathic pain is a common chronic pain condition with mechanisms far clearly been elucidated. Mounting preclinical and clinical studies have shown neuropathic pain is highly associated with histone acetylation modification, which follows expression regulation of various pain-related molecules such as mGluR1/5, glutamate aspartate transporter, glutamate transporter-1, GAD65, Nav1.8, Kv4.3, μ-opioid receptor, brain-derived neurotrophic factor, and certain chemokines. As two types of pivotal enzymes involved in histone acetylation, histone deacetylases induce histone deacetylation to silence gene expression; in contrast, histone acetyl transferases facilitate histone acetylation to potentiate gene transcription. ⋯ In fact, numerous animal studies have suggested various histone deacetylase inhibitors, Sirt (class III histone deacetylases) activators, and histone acetyl transferases inhibitors are effective in neuropathic pain treatment via targeting specific epigenetic sites. In this review, we summarize the characteristics of the molecules and mechanisms of neuropathy-related acetylation, as well as the acetylation upregulation and blockade for neuropathic pain therapy. Finally, we will discuss the current drug advances focusing on neuropathy-related acetylation along with the underlying treatment mechanisms.