Mol Pain
-
The occurrence of debilitating chronic persistent (24/7) headache after mild traumatic brain injury represents a central neuropathic pain state. Previous studies suggest that this chronic headache state can be attributed to altered supraspinal modulatory functional connectivity in both resting and evoked pain states. Abnormalities in the myelin sheaths along the supraspinal superior longitudinal fasciculus and anterior thalamic radiation are frequently associated with alteration in pain modulation related to functional connectivity deficit with the prefrontal cortex. This study assessed the correlated axonal injury-related white matter tract abnormality underlying these previously observed prefrontal functional connectivity deficits by comparing the fractional anisotropy, axial diffusivity, and radial diffusivity of brain white matter in patients with mild traumatic brain injury-related headache to healthy controls. ⋯ The identified white matter tract abnormalities may represent a state of Wallerian degeneration which correlates with the functional connectivity deficit in pain modulation and can contribute to the development of the chronic persistent headache in the patients with mild traumatic brain injury.
-
Neuropathic pain is a common chronic pain condition with mechanisms far clearly been elucidated. Mounting preclinical and clinical studies have shown neuropathic pain is highly associated with histone acetylation modification, which follows expression regulation of various pain-related molecules such as mGluR1/5, glutamate aspartate transporter, glutamate transporter-1, GAD65, Nav1.8, Kv4.3, μ-opioid receptor, brain-derived neurotrophic factor, and certain chemokines. As two types of pivotal enzymes involved in histone acetylation, histone deacetylases induce histone deacetylation to silence gene expression; in contrast, histone acetyl transferases facilitate histone acetylation to potentiate gene transcription. ⋯ In fact, numerous animal studies have suggested various histone deacetylase inhibitors, Sirt (class III histone deacetylases) activators, and histone acetyl transferases inhibitors are effective in neuropathic pain treatment via targeting specific epigenetic sites. In this review, we summarize the characteristics of the molecules and mechanisms of neuropathy-related acetylation, as well as the acetylation upregulation and blockade for neuropathic pain therapy. Finally, we will discuss the current drug advances focusing on neuropathy-related acetylation along with the underlying treatment mechanisms.
-
Chronic migraine is a common chronic daily headache featured by frequent headache attacks with at least 15 headache days per month, which brings great disease burden to both the sufferers and the society. Transformed from episodic migraine, the pathophysiology of chronic migraine is not fully understood, even though several risk factors have been associated with migraine progression. ⋯ Chronic migraine is undertreated because of its poor treatment response and limited therapy options. In this article, we reviewed the latest data to outline the clinical feature, pathophysiological mechanism, and management of chronic migraine, in the expectation to provide direction for future research and finally to take good care of chronic migraine patients.
-
Back pain is common and costly. Although lumbar disc degeneration has long been regarded as a major contributor to back pain, how disc degeneration leads to back pain remains unclear. Recent studies observed microglia activation in the spinal cord after disc degeneration, suggesting activated microglia may be involved in discogenic back pain. ⋯ Immunofluorescence demonstrated colony-stimulating factor 1, a cytokine that promotes microglia repopulation, was significantly increased in L3 dorsal root ganglions, whereas its receptor colony-stimulating factor 1 receptor was upregulated on microglia in the disc-injured mice. In summary, lumbar disc puncture caused progressive disc degeneration which induced microglia activation and back pain in mice. Increased colony-stimulating factor 1/colony-stimulating factor 1 receptor signaling is involved in the disc degeneration-induced microglia activation and back pain.
-
We have previously reported that histamine-induced pruritus was attenuated in toll-like receptor 4 (TLR4) knockout mice due to decreased transient receptor potential V1 (TRPV1) sensitivity. Our results implied that TLR4 potentiated TRPV1 activation in sensory neurons; however, the molecular mechanism has yet to be elucidated. In this study, we investigated the molecular mechanisms of TLR4-mediated TRPV1 potentiation using TLR4-deficient sensory neurons and a heterologous expression system. ⋯ Our data show that direct association between TRPV1 and TLR4 through the TIR domain enhances TRPV1 activity by blocking activation-induced TRPV1 desensitization.