Mol Pain
-
Voltage-gated sodium channel Nav1.7 is a key molecule in nociception, and its dysfunction has been associated with various pain disorders. Here, we investigated the regulation of Nav1.7 biophysical properties by Fyn, an Src family tyrosine kinase. Nav1.7 was coexpressed with either constitutively active (FynCA) or dominant negative (FynDN) variants of Fyn kinase. ⋯ Our study demonstrates that Nav1.7 is a substrate for Fyn kinase, and the effect of the channel phosphorylation depends on the cell background. Fyn-mediated modulation of Nav1.7 may regulate DRG neuron excitability and contribute to pain perception. Whether this interaction could serve as a target for developing new pain therapeutics requires future study.
-
Painful burn injuries are among the most debilitating form of trauma, globally ranking in the top 15 leading causes of chronic disease burden. Despite its prevalence, however, chronic pain after burn injury is under-studied. We previously demonstrated the contribution of the Rac1-signaling pathway in several models of neuropathic pain, including burn injury. ⋯ Treatment with romidepsin decreased dendritic spine dysgenesis, reduced c-fos expression, and rescued pain thresholds. Drug discontinuation resulted in a relapse of cellular correlates of pain and in lower pain thresholds in behavioral tests. Taken together, our findings identify Pak1 signaling as a potential molecular target for therapeutic intervention in traumatic burn-induced neuropathic pain.
-
Etomidate is a preferred drug for the induction of general anesthesia in cardiovascular risk patients. As with propofol and other perioperatively used anesthetics, the application of aqueous etomidate formulations causes an intensive burning pain upon injection. Such algogenic properties of etomidate have been attributed to the solubilizer propylene glycol which represents 35% of the solution administered clinically. The aim of this study was to investigate the underlying molecular mechanisms which lead to injection pain of aqueous etomidate formulations. ⋯ Data in our study provided evidence that pain upon injection of clinical aqueous etomidate formulations is not an unspecific effect of hyperosmolarity but rather due to a specific action mediated by activated nociceptive TRPA1 and TRPV1 ion channels in sensory neurons.
-
Background Chronic pain affects millions of people worldwide; however, its cellular and molecular mechanisms have not been completely elucidated. It is thought that chronic pain is triggered by nociceptive sensitization, which produces elevated nocifensive responses. A model has been developed in Drosophila melanogaster to investigate the underlying mechanisms of chronic pain using ultraviolet-induced tissue injury to trigger thermal allodynia, a nociceptive hypersensitivity to a normally innocuous stimulus. ⋯ The effects on pain perception appear to be specific to the sensitization system, as the ability to respond to a normally noxious stimulus in the absence of injury was left intact, and no nociceptor morphological defects were observed. Conclusion These results provide further support of the hypothesis that the BMP pathway plays a crucial role in the development of nociceptive sensitization. Because of its strong conservation between invertebrates and mammals, the BMP pathway may be worthy of future investigation for the development of targeted treatments to alleviate chronic pain.
-
Background The aim of this study was to assess peripheral measures and central metabolites associated with lipids using magnetic resonance spectroscopy. Results Twelve patients with complex regional pain syndrome (CRPS) and 11 healthy controls participated. Using magnetic resonance spectroscopy, we measured the levels of lipid 13a (Lip13a) and lipid 09 (Lip09) relative to total creatine (tCr) levels in the right and left thalamus. ⋯ On the other hand, there were positive correlations between Lip13a/tCr and Lip09/tCr and urine pH in CRPS patients. There were significant correlations between Lip13a/tCr or Lip09/tCr and different peripheral measures depending on the side of the thalamus (right or left) in CRPS patients. Conclusion This is the first report indicating that abnormal interactions of Lip13a and Lip09 in the thalamus with peripheral measures and central metabolites may mediate the complex pathophysiological mechanisms underlying CRPS.