Mol Pain
-
Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel, which can detect various noxious stimuli that cause pain, inflammation, hyperalgesia, and itch. TRPV1 knock-out mice show deficiency in nociception, but the in vivo effects of persistent activation of TRPV1 are not completely understood. Here, we generated TRPV1 knock-in mice with a G564S mutation. ⋯ Indeed, calcium imaging together with electrophysiology showed that the overactive mutant had decreased capsaicin sensitivity. Western blot analysis revealed that the G564S mutant reduced TRPV1 phosphorylation and cell membrane trafficking. Together, we have generated a mouse model with a gain-of-function mutation in Trpv1 gene and demonstrated that the pain and histamine-dependent itch sensations in these mice are impaired due to a decreased phosphorylation level and reduced membrane localization of TRPV1.
-
Chronic orofacial pain is a significant health problem requiring identification of regulating processes. Involvement of epigenetic modifications that is reported for hindlimb neuropathic pain experimental models, however, is less well studied in cranial nerve pain models. Three independent observations reported here are the (1) epigenetic profile in mouse trigeminal ganglia (TG) after trigeminal inflammatory compression (TIC) nerve injury mouse model determined by gene expression microarray, (2) H3K9 acetylation pattern in TG by immunohistochemistry, and (3) efficacy of histone deacetylase (HDAC) inhibitors to attenuate development of hypersensitivity. ⋯ On day 21, when tissues are healed, other differentially expressed genes include 39 of the top 50 upregulated and downregulated genes. Remarkably, preemptive manipulation of gene expression with two HDAC inhibitors (HDACi's), suberanilohydroxamic acid (SAHA) and MS-275, reduces the magnitude and duration of whisker pad mechanical hypersensitivity and prevents the development of a persistent pain state. These findings suggest that trigeminal nerve injury leads to epigenetic modifications favoring overexpression of genes involved in nerve regeneration and that maintaining transcriptional homeostasis with epigenetic modifying drugs could help prevent the development of persistent pain.
-
Background Oxaliplatin is a third-generation chemotherapeutic agent that is commonly used to treat metastatic digestive tumors; however, one of the main limiting complications of oxaliplatin is painful peripheral neuropathy. The purpose of this study was to examine the underlying mechanisms by which mammalian target of rapamycin (mTOR) and its signal are responsible for oxaliplatin-evoked neuropathic pain. Methods Neuropathic pain was induced by intraperitoneal injection of oxaliplatin in rats. ⋯ Conclusions The data revealed specific signaling pathways leading to oxaliplatin-induced peripheral neuropathic pain, including the activation of PI3K-mTOR and pro-inflammatory cytokine signal. Inhibition of these pathways alleviates neuropathic pain. Targeting one or more of these molecular mediators may present new opportunities for treatment and management of neuropathic pain observed during chemotherapeutic application of oxaliplatin.
-
Ion channels are very important in the peripheral sensitization in neuropathic pain. Our present study aims to investigate the possible contribution of CaV3.2 T-type calcium channels in damaged dorsal root ganglion neurons in neuropathic pain. We established a neuropathic pain model of rats with spared nerve injury. ⋯ These results indicate a functional up-regulation of CaV3.2 T-type calcium channels in the damaged medium-sized neurons after spared nerve injury. Behaviorally, blockade of CaV3.2 with antisense oligodeoxynucleotides could significantly reverse mechanical allodynia. These results suggest that CaV3.2 T-type calcium channels in damaged medium-sized dorsal root ganglion neurons might contribute to neuropathic pain after peripheral nerve injury.
-
Bone cancer pain remains a major challenge in patients with primary or metastatic bone cancer due to a lack of understanding the mechanisms. Previous studies have revealed the two distinct functional polarization states of microglia (classically activated M1 and alternatively activated M2) in the spinal cord in nerve injury-induced neuropathic pain. However, whether microglia in the spinal cord polarize to M1 and M2 phenotypes and contribute to the development of bone cancer pain remains unclear. ⋯ Our results show that microglia in the spinal cord presented increased M1 polarization and decreased M2 polarization, while overproduction of IL-1β and inhibited expression of IL-10 was detected during bone cancer pain development. Intraperitoneal administration of dehydrocorydaline (10 mg/kg) had significant antinociceptive effects on day 14 after osteosarcoma cell implantation, accompanied by suppressed M1 phenotype and upregulated M2 phenotype of microglia in the spinal cord, while alleviated inflammatory response was observed then. These results suggest that the imbalanced polarization of microglia toward the M1 phenotype in the spinal cord may contribute to the development of bone cancer pain, while dehydrocorydaline helps to attenuate bone cancer pain, with microglial polarization shifting toward the M2 phenotype in the spinal cord.