Mol Pain
-
Our study aimed to identify differentially methylated CpGs/regions and their enriched genomic pathways associated with underlying chronic musculoskeletal pain in older individuals. We recruited cognitively healthy older adults with (n = 20) and without (n = 9) self-reported musculoskeletal pain and collected DNA from peripheral blood that was analyzed using MethylationEPIC arrays. We identified 31,739 hypermethylated CpG and 10,811 hypomethylated CpG probes (ps ≤ 0.05). ⋯ Further, Weighted Gene Correlation Network Analysis revealed a comethylation network module in the pain group that was not preserved in the control group, where the hub gene was the cyclic adenosine monophosphate-dependent transcription factor ATF-2. Our preliminary findings provide new epigenetic insights into the role of aberrant immune signaling in musculoskeletal pain in older adults while further supporting involvement of dysfunctional GABAergic signaling mechanisms in chronic pain. Our findings need to be urgently replicated in larger cohorts as they may serve as a basis for developing and targeting future interventions.
-
Exosomes are extracellular microvesicles implicated in intercellular communication with ability to transfer cargo molecules, including protein, lipids, and nucleic acids, at both close and distant target sites. It has been shown that exosomes are implicated in physiological and pathological processes. In recent years, the interest on exosomes' role in many pain states has increased. ⋯ Specific molecular patterns characterize exosomes' cargo according to the cellular origin, epigenetic modifications, environmental state, and stressor factors. Therefore, the identification of specific cargo's profile associated to pain states may lead to recognize specific pathological states and to consider the use of exosomes as biomarkers of diseases. Furthermore, exosomes' ability to transfer information and their presence in many accessible biological fluids suggest a potential use as novel non-invasive therapeutic tools in pain field.
-
Although migraine is a major global public health problem, its impact on cognitive abilities remains controversial. Thus, the present study investigated the effects of repeated administration of inflammatory soup to the dura of rats, over three weeks, on spatial cognition, hippocampal synaptic plasticity, and the expression of N-methyl-D-aspartate receptor subunits. Additionally, low doses of amitriptyline (5 mg/kg) were applied to assess its therapeutic effects. ⋯ However, amitriptyline improved pain behaviors, enhanced cognitive function, and increased synaptic plasticity in the inflammatory soup rats. On the other hand, the administration of amitriptyline to normal rats negatively influenced synaptic plasticity and reduced the expression of N-methyl-D-aspartate receptor subunits. The present results indicate that inflammatory soup-induced dural nociception led to impairments in spatial cognition that could be attributed to reductions in hippocampal long-term potentiation and the decreased expression of N-methyl-D-aspartate receptor subunits.