Mol Pain
-
Background: Fentanyl and its analogs are extensively used for pain relief. However, their paradoxically pronociceptive effects often lead to increased opioids consumption and risk of chronic pain. Compared to other synthetic opioids, remifentanil has been strongly linked to acute opioid hyperalgesia after exposure [remifentanil-induced hyperalgesia (RIH)]. ⋯ The overexpression of miR-134-5p attenuated the hyperalgesic phenotype, excessive dendritic spine remodeling, excitatory synaptic structural plasticity, and Kainate receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in SDH resulting from remifentanil exposure. Besides, intrathecal injection of selective KA-R antagonist was able to reverse the GRIK3 membrane trafficking and relieved RIH. Conclusion: The miR-134-5p contributes to remifentanil-induced pronociceptive features via directly targeting Grik3 to modulate dendritic spine morphology and synaptic plasticity in spinal neurons.
-
Recently, epigenetics involved in the regulation of gene expression has become a research hotspot. This study evaluated N4-acetylcytidine (ac4c) RNA acetylation in the spinal dorsal horn (SDH) of rats with cancer-induced bone pain (CIBP). The ac4C-specific RIP sequencing and NAT10-specific RIP sequencing were performed to identify the differences in ac4C acetylation and gene expression in the SDH between CIBP and sham groups, the relationship with the acetylation-modifying enzyme NAT10, and association analysis was performed. ⋯ In this study, we demonstrated that bone cancer increases the levels of NAT10 and the overall acetylation, inducing differential ac4C patterns in the SDH of rats. Through verification experiments, it was found that ac4C acetylation of some genes is regulated by NAT10, and differential ac4C patterns in RNA determine the expression of this RNA. We exposed that some CIBP-related gene expression was altered in the SDH of rats, which was regulated by differentially expressed ac4C acetylation.
-
Large-diameter myelinated fibers in sciatic nerves are composed of both Aα/β-afferent fibers and Aα-efferent fibers to convey sensory and motor impulses, respectively, via saltatory conduction for rapid leg responses. Saltatory conduction and electrophysiological properties at the nodes of Ranvier (NRs) of these sciatic nerve fibers have not been directly studied. We used ex vivo sciatic nerve preparations from rats and applied patch-clamp recordings at the NRs of both Aα/β-afferent fibers and Aα-efferent fibers in the sciatic nerves to characterize their saltatory conduction and intrinsic electrophysiological properties. ⋯ At the NRs of both types of fibers, depolarizing voltages evoked transient inward currents followed by non-inactivating outward currents, and the inward currents and non-inactivating outward currents at the NRs were not significantly different between the two types of fibers. Using AP-clamp, inward currents during AP upstroke were found to be insignificant difference, but amplitudes of non-inactivating outward currents during AP repolarization were significantly lower at the NRs of Aα-efferent fibers than at the NRs of Aα/β-afferent fibers in the sciatic nerves. Collectively, saltatory conduction, ionic currents, and intrinsic electrophysiological properties at the NRs of Aα/β-afferent fibers and Aα-efferent fibers in the sciatic nerves are generally similar, but some differences were also observed.
-
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common side-effect of anti-cancer therapy. To date, there are no clinically effective analgesics that could prevent and treat CIPN. However, the exact pathogenesis of CIPN is still unclear. ⋯ These results suggested that neuroactive ligand-receptor interaction and cytokine-cytokine receptor interaction are majorly involved in sensory neurons of rats with PIPN. Immune, inflammatory responses and neuron functional changes are the major pathogenesis of PIPN. Paclitaxel-induced peripheral neuropathy has shared characteristics with both inflammatory pain and neuropathic pain.
-
Irritable bowel syndrome (IBS) related chronic visceral pain affects 20% of people worldwide. The treatment options are very limited. Although the scholarly reviews have appraised the potential effects of the intestinal microbiota on intestinal motility and sensation, the exact mechanism of intestinal microbiota in IBS-like chronic visceral pain remains largely unclear. ⋯ FA supplement alleviated chronic visceral pain and normalized the Clostridiales frequency in NCI rats. In addition, FA supplement significantly reduced the frequency of sEPSCs of neurons in the spinal dorsal horn of NCI rats. Folic Acid treatment attenuated chronic visceral pain of NCI rats through reducing hydrogen sulfide production from Clostridiales in intestine.