Mol Pain
-
STOML3 is a membrane bound scaffolding protein that has been shown to facilitate the opening of mechanically sensitive ion channels and contribute to noxious mechanical sensation, allodynia and hyperalgesia. In this study, we aimed to determine the role of STOML3 in noxious mechanical sensitivity of bone afferent neurons and carrageenan-induced acute inflammation in the bone. An in vivo, electrophysiological bone-nerve preparation was used to make recordings of the activity and sensitivity of bone afferent neurons that innervate the tibial marrow cavity in anaesthetised rats, in response to noxious mechanical stimuli delivered to the marrow cavity, before and after injection of either the STOML3 oligomerisation inhibitor OB-1 or vehicle, in either naïve animals or animals with carrageenan-induced inflammation of the marrow cavity. ⋯ Animals treated with OB-1 spent a significantly greater amount of time on the limb injected with carrageenan than animals treated with saline. Our findings demonstrate that inhibition of STOML3 oligomerisation reduces inflammatory bone pain by reducing the sensitivity of Aδ bone afferent neurons to mechanical stimulation. Targeting STOML3 may be an effective approach to reduce pain from noxious pressure and/or painful inflammatory pathology in bone.
-
Given that the incidence of cancer is dramatically increasing nowadays, cancer-related neuropathic pain including tumor-related and therapy-related pain gradually attracts more attention from researchers, which basically behaves as a metabolic-neuro-immune disorder with worse clinical outcomes and prognosis. Among various mechanisms of neuropathic pain, the common underlying one is the activation of inflammatory responses around the injured or affected nerve(s). Innate and adaptive immune reactions following nerve injury together contribute to the regulation of pain. ⋯ Of interest, these immune cells in tumor microenvironment exert potent functions in promoting neuropathic pain through different signaling pathways. To this end, this review mainly focuses on the contribution of different types of immune cells to cancer-related neuropathic pain, aims to provide a comprehensive summary of how these immune cells derived from the certain tumor microenvironment participate in the pathogenesis of neuropathic pain. Furthermore, the clarification of roles of various immune cells in different tumor immune microenvironments associated with certain cancers under neuropathic pain states constitutes innovative biology that takes the pain field in a different direction, and thereby provides more opportunities for novel approaches for the prevention and treatment of cancer-related neuropathic pain.
-
Polysorbate 80 is a non-ionic detergent derived from polyethoxylated sorbitan and oleic acid. It is widely used in pharmaceuticals, foods, and cosmetics as an emulsifier. Nav1.7 is a peripheral sodium channel that is highly expressed in sympathetic and sensory neurons, and it plays a critical role in determining the threshold of action potentials (APs). ⋯ Our results indicate that polysorbate 80 inhibits Nav1.7 current in concentration-, state-, and use-dependent manners when used even below commercial concentrations. This suggests that polysorbate 80 may be helpful in pain medicine as an excipient. In addition, in vitro experiments using polysorbate 80 with neurons should be conducted with caution.
-
Chronic pain is one of the most common, costly, and potentially debilitating health issues facing older adults, with attributable costs exceeding $600 billion annually. The prevalence of pain in humans increases with advancing age. Yet, the contributions of sex differences, age-related chronic inflammation, and changes in neuroplasticity to the overall experience of pain are less clear, given that opposing processes in aging interact. ⋯ We provide evidence to suggest that neurodegenerative conditions engender a loss of neural plasticity involved in pain response, whereas low-grade inflammation in aging increases CNS sensitization but decreases PNS sensitivity. Insights from preclinical studies are needed to answer mechanistic questions. However, the selection of appropriate aging models presents a challenge that has resulted in conflicting data regarding pain processing and behavioral outcomes that are difficult to translate to humans.