Mol Pain
-
Recent studies using different experimental approaches demonstrate that silent synapses may exist in the adult cortex including the sensory cortex and anterior cingulate cortex (ACC). The postsynaptic form of long-term potentiation (LTP) in the ACC recruits some of these silent synapses and the activity of calcium-stimulated adenylyl cyclases (ACs) is required for such recruitment. It is unknown if the chemical activation of ACs may recruit silent synapses. ⋯ These findings suggest that these adult cortical synapses are not homogenous. The application of a selective calcium-permeable AMPA receptor inhibitor 1-naphthyl acetyl spermine (NASPM) reversed the potentiation and the recruitment of silent responses, indicating that the AMPA receptor is required. Our results strongly suggest that the AC-dependent postsynaptic AMPA receptor contributes to the recruitment of silent responses at cortical LTP.
-
Preemptive analgesia is used for postoperative pain management, providing pain relief with few adverse effects. In this study, the effect of a preemptive regime on rat behavior and c-fos expression in the spinal cord of the uterine surgical pain model was evaluated. It was a lab-based experimental study in which 60 female Sprague-Dawley rats; eight to 10 weeks old, weighing 150-300 gm were used. ⋯ In contrast, the saline group exhibited c-fos expression primarily in laminae I-II and III-IV for both superficial and deep pain groups and lamina X in the deep pain group only (p ≤ .05). Hence, a preemptive regimen results in significant suppression of both superficial and deep components of pain transmission. These findings provide compelling evidence of the analgesic efficacy of preemptive treatment in alleviating pain response associated with uterine surgery.
-
Painful Diabetic Neuropathy (PDN) is a common diabetes complication that frequently causes severe hyperalgesia and allodynia and presents treatment challenges. Mitochondrial-derived peptide (MOTS-c), a novel mitochondrial-derived peptide, has been shown to regulate glucose metabolism, insulin sensitivity, and inflammatory responses. This study aimed to evaluate the effects of MOTS-c in streptozocin (STZ)-induced PDN model and investigate the putative underlying mechanisms. ⋯ Mechanistic studies indicated that MOTS-c significantly restored mitochondrial biogenesis, inhibited microglia activation, and decreased the production of pro-inflammatory factors, which contributed to the alleviation of pain. Moreover, MOTS-c decreased STZ-induced pain hypersensitivity in PDN mice by activating AMPK/PGC-1α signaling pathway. This provides the pharmacological and biological evidence for developing mitochondrial peptide-based therapeutic agents for PDN.
-
In the mammalian somatosensory system, polymodality is defined as the competence of some neurons to respond to multiple forms of energy (e.g., mechanical and thermal). This ability is thought to be an exclusive property of nociceptive neurons (polymodal C-fiber nociceptors) and one of the pillars of nociceptive peripheral plasticity. The current study uncovered a completely different neuronal sub-population with polymodal capabilities on the opposite mechanical modality spectrum (tactile). ⋯ These cells' mechanical thresholds and electrical properties are similar to any low-threshold mechano-receptors (LT), conducting in a broad range of velocities (Aδ to Aβ), lacking CGRP and TRPM8 receptors. Due to its density, cold-response range, speed, and response to injury (or lack thereof), we speculate on its role in controlling reflexive behaviors (wound liking and rubbing) and modulation of nociceptive spinal cord integration. Further studies are required to understand the mechanisms behind this neuron's polymodality, central architecture, and impact on pain perception.
-
The transmission of nociceptive and pruriceptive signals in the spinal cord is greatly influenced by descending modulation from brain areas such as the rostral ventromedial medulla (RVM). Within the RVM three classes of neurons have been discovered which are relevant to spinal pain modulation, the On, Off, and Neutral cells. These neurons were discovered due to their functional response to nociceptive stimulation. ⋯ In the present study, we leverage our ability to perform optotagging within the RVM to determine whether RVM On, Off, and Neutral cells are GABAergic. We found that 27.27% of RVM On cells, 47.37% of RVM Off cells, and 42.6% of RVM Neutral cells were GABAergic. These results demonstrate that RVM On, Off, and Neutral cells represent a heterogeneous population of neurons and provide a reliable technique for the molecular identification of these neurons.