Mol Pain
-
Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive disorder, characterized by loss of algesthesis and inability to sweat. CIPA is known to be caused by mutations in the neurotrophic tyrosine kinase receptor type 1 gene ( NTRK1). However, the details of NTRK1 mutations in Chinese CIPA patients remain unclear. ⋯ Interestingly, we discovered two forms of novel recurrent mutations: the first was a large intragenic deletion c.429-374_717 + 485del mediated by recombination between Alu elements, and the second was a deep intronic substitutions c.[851-798C > T;851-794C > G]. All probands were homozygotes or compound heterozygotes of these mutations. Current findings expand our knowledge about the mutation spectrum of NTRK1 in Chinese CIPA patients and provide more evidence for precise diagnosis of the clinically suspected patients with CIPA.
-
Background The amygdala plays a key role in fear learning and extinction and has emerged as an important node of emotional-affective aspects of pain and pain modulation. Impaired fear extinction learning, which involves prefrontal cortical control of amygdala processing, has been linked to neuropsychiatric disorders. Here, we tested the hypothesis that fear extinction learning ability can predict the magnitude of neuropathic pain. ⋯ Fear extinction- rats, but not fear extinction+ rats, also developed depression-like behavior. Extracellular single unit recordings of amygdala (central nucleus) neurons in behaviorally tested rats (anesthetized with isoflurane) found greater increases in background activity, bursting, and evoked activity in fear extinction- rats than fear extinction+ rats in the spinal nerve ligation model compared to sham controls. Conclusion The data may suggest that fear extinction learning ability predicts the magnitude of neuropathic pain-related affective rather than sensory behaviors, which correlates with differences in amygdala activity changes.
-
Neuroligin1 is an important synaptic cell adhesion molecule that modulates the function of synapses through protein-protein interactions. Yet, it remains unclear whether the regulation of synaptic transmission in the spinal cord by neruoligin1 contributes to the development of postoperative pain. In a rat model of postoperative pain induced by plantar incision, we conducted Western blot study to examine changes in the expression of postsynaptic membrane of neuroligin1, postsynaptic density 95 (PSD-95), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor GluA1 and GluA2 subunits in the spinal cord dorsal horn after injury. ⋯ Importantly, pretreatment with intrathecal neuroligin1 siRNA2497, but not scrambled siRNA or vehicle, prevented the upregulation of GluA1 expression at 3 h after incision, inhibited the enhanced neuroligin1/PSD-95 interaction, and attenuated postoperative pain. Together, current findings suggest that downregulation of spinal neuroligin1 expression may ameliorate postoperative pain through inhibiting neuroligin1/PSD-95 interaction and synaptic targeting of GluA1 subunit. Accordingly, spinal neuroligin1 may be a potential new target for postoperative pain treatment.
-
Reward system has been proved to be important to nociceptive behavior, and the nucleus accumbens (NAc) is a key node in reward circuitry. It has been further revealed that dopamine system modulates the NAc to influence the pain sensation, whereas the role of glutamatergic projection in the NAc in the modulation of chronic pain is still elusive. In this study, we used a complete Freund's adjuvant-induced chronic inflammatory pain model to explore the changes of the glutamatergic terminals in the NAc, and we found that following the chronic inflammation, the protein level of vesicular glutamate transporter1 (VGLUT1) was significantly decreased in the NAc. ⋯ Furthermore, using a whole-cell recording in double transgenic mice, in which dopamine receptor 1- and D2R-expressing neurons can be visualized, we found that the frequency of spontaneous excitatory postsynaptic currents was significantly decreased and paired-pulse ratio of evoked excitatory postsynaptic currents was increased in D2R neurons, but not in dopamine receptor 1 neurons in NAc of complete Freund's adjuvant group. Moreover, the abnormal expression of soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex contributed to the reduced formation of glutamate vesicles. Hence, our results demonstrated that decreased glutamate release in the indirect pathway of the NAc may be a critical mechanism for chronic pain and provided a novel evidence for the presynaptic mechanisms in chronic pain regulation.
-
Bi-allelic dysfunctional mutations in nerve growth factor (NGF) cause the rare human phenotype hereditary sensory and autonomic neuropathy type 5 (HSAN5). We describe a novel NGF mutation in an individual with typical HSAN5 findings. The mutation c.361C>T, p. ⋯ R121W mutation affected apoptosis and found a reduced protective effect compared to wild-type NGF. Our results suggest that the p. R121W NGF mutation causes HSAN5 through negating the ability of furin to cleave proNGF to produce NGF-β.